The Reverse State Monad in Rocq (Work in Progress)

David Nowak (CNRS, Lille)
Vlad Rusu (Inria, Lille)

FROM Symposium, lasi, Romania, Sept. 17-19, 2025

1/23



Monads

@ adding features (effects) to functional languages while keeping purity:

exceptions;
mutable state;
nondeterminism;
concurrency;
continuations;

@ pioneered by Haskell: rich library of monads and monad transformers;

@ Reverse State Monad: effect is backwards causality;

@ encoding the monad in Rocq - towards proving reverse programs
https://gitlab.inria.fr/haddock/revstate.

2/23


https://gitlab.inria.fr/haddock/revstate

Outline

0 Examples

3/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;

4/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
@ rules of the game:

o host discreetly (without player seeing) puts some money in box #2;
o then player chooses: either both boxes, or just box #2;

4/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
@ rules of the game:

o host discreetly (without player seeing) puts some money in box #2;
o then player chooses: either both boxes, or just box #2;

@ current game: host says is able to use backwards causality

4/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
@ rules of the game:

o host discreetly (without player seeing) puts some money in box #2;
o then player chooses: either both boxes, or just box #2;

@ current game: host says is able to use backwards causality

o if player’s future choice = both boxes, host puts 1€ in box #2;
o if player’s future choice = box #2, host puts 1.000.000€ in it;

4/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
@ rules of the game:

o host discreetly (without player seeing) puts some money in box #2;
o then player chooses: either both boxes, or just box #2;

@ current game: host says is able to use backwards causality

o if player’s future choice = both boxes, host puts 1€ in box #2;
o if player’s future choice = box #2, host puts 1.000.000€ in it;

@ strategy of the player determined by belief in backwards causality:

4/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
@ rules of the game:

o host discreetly (without player seeing) puts some money in box #2;
o then player chooses: either both boxes, or just box #2;

@ current game: host says is able to use backwards causality

o if player’s future choice = both boxes, host puts 1€ in box #2;
o if player’s future choice = box #2, host puts 1.000.000€ in it;

@ strategy of the player determined by belief in backwards causality:
@ yes : choose box #2;

4/23



Newcomb’s Paradox

Game: player vs. host

@ state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
@ rules of the game:

o host discreetly (without player seeing) puts some money in box #2;
o then player chooses: either both boxes, or just box #2;

@ current game: host says is able to use backwards causality

o if player’s future choice = both boxes, host puts 1€ in box #2;
o if player’s future choice = box #2, host puts 1.000.000€ in it;

@ strategy of the player determined by belief in backwards causality:

@ yes : choose box #2;
@ no : choose both boxes.

4/23



Backwards Causality with the Reverse State Monad

5/23



Backwards Causality with the Reverse State Monad

A more formal example:

@ assume a state containing an infinite Stream over N with functions

e _:_ N — Stream — Stream :
e map : (N — N) — Stream — Stream;

5/23



Backwards Causality with the Reverse State Monad

A more formal example:

@ assume a state containing an infinite Stream over N with functions

e _::_ :N— Stream — Stream :
e map : (N — N) — Stream — Stream;

@ do x « get reads the (whole) state & stores it in x;
@ put y changes the state to y.

5/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);
@ hence state simultaneously contains x and (0 :: map (1+) x);

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);
@ hence state simultaneously contains x and (0 :: map (1+) x);
@ hence x =0 :: map (1+) x);

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);
@ hence state simultaneously contains x and (0 :: map (1+) x);

@ hence x =0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x =0 = 1 == 2 =1 ...

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);
@ hence state simultaneously contains x and (0 :: map (1+) x);

@ hence x =0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x =0 :: 1 :: 2 :: ... there must be a trick!
(... a fixpoint is hidden inside the program ...)

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);
@ hence state simultaneously contains x and (0 :: map (1+) x);

@ hence x =0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x =0 :: 1 :: 2 :: ... there must be a trick!
(... a fixpoint is hidden inside the program ...)

@ do b « get; put —b : equation b = —=b has no solution in Booleans

6/23



Backwards Causality with the Reverse State Monad

What does do x « get; put(0 :: map (1+) x) do ?

@ do x « get reads future state, after put(0 :: map (1+) x);
@ hence state simultaneously contains x and (0 :: map (1+) x);
@ hence x =0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x =0 :: 1 :: 2 :: ... there must be a trick!
(... a fixpoint is hidden inside the program ...)

@ do b « get; put —b : equation b = —=b has no solution in Booleans
... but has solution in CPO of Booleans;

@ “fixpoint”, “CPQOs” : domain theory (& our library in Rocq)!

6/23



Background

Outline

e Background

7123



Background Domain Theory

Outline

e Background
@ Domain Theory

8/23



Complete Partial Orders (CPOs)

@ (C,<,1) with set C, order <on C, L least element of C;
@ < interpreted as definition order, with L interpreted as undefined,

9/23



Complete Partial Orders (CPOs)

@ (C,<,1) with set C, order <on C, L least element of C;
@ < interpreted as definition order, with L interpreted as undefined,
@ each increasing sequence' S has least upper bound lub S.

'Actually, each directed set.
9/23



Complete Partial Orders (CPOs)

@ (C,<,1) with set C, order <on C, L least element of C;
@ < interpreted as definition order, with L interpreted as undefined,
@ each increasing sequence' S has least upper bound lub S.

Examples:

@ flat CPO N U {L}: order restricted to N is equality;

'Actually, each directed set.
9/23



Complete Partial Orders (CPOs)

@ (C,<,1) with set C, order <on C, L least element of C;
@ < interpreted as definition order, with L interpreted as undefined,
@ each increasing sequence' S has least upper bound lub S.

Examples:

@ flat CPO N U {L}: order restricted to N is equality;
@ Stream over N U {L}: pointwise order s C s’ iff Vi e N, s[i] < s'[i].

'Actually, each directed set.
9/23



Background Domain Theory

Continuous Functions

@ for posets C,C’: f: C — C’ is monotonic iff x < y implies f x <" f y;

10/23



Background Domain Theory

Continuous Functions

@ for posets C,C’: f: C — C’ is monotonic iff x < y implies f x <" f y;

@ for CPOs C,C’: f : C — C’ is continuous iff f is monotonic & for all
increasing sequence S, f (lub S) = lub” (f S);

10/23



Background Domain Theory

Continuous Functions

@ for posets C,C’: f: C — C’ is monotonic iff x < y implies f x <" f y;

@ for CPOs C,C’: f: C — C’ is continuous iff f is monotonic & for all
increasing sequence S, f (lub S) = lub” (f S);
@ notation [C — C’] = set of continuous functions between CPOs C, C’;

10/23



Background Domain Theory

Continuous Functions

@ for posets C,C’: f: C — C’ is monotonic iff x < y implies f x <" f y;

@ for CPOs C,C’: f: C — C’ is continuous iff f is monotonic & for all
increasing sequence S, f (lub S) = lub” (f S);

@ notation [C — C’] = set of continuous functions between CPOs C, C’;

@ examples : constant, identity, compositions of continuous functions;

10/23



Background Domain Theory

Continuous Functions

for posets C,C’: f: C — C’ is monotonic iff x < y implies f x <" f y;

for CPOs C,C’: f: C — C’ is continuous iff f is monotonic & for all
increasing sequence S, f (lub S) = lub” (f S);
notation [C — C’] = set of continuous functions between CPOs C, C’;

examples : constant, identity, compositions of continuous functions;

structure : CPOs + continuous functions = category CPO.

10/23



CPO is Cartesian Closed

For CPOs (C’ <, 1), (C’, <, 1’), the following are CPOs:
@ product: (C x C’,C, (L, L)) with pair-pointwise C;

@ exponentiation: ([C — C’],C,A- = L) with function-pointwise L.

11/23



Background Domain Theory

Fixpoints

@ Kleene: f: [C — C] has least fixpoint fix f = Jub{f(") 1 | n € N};

12/23



Background Domain Theory

Fixpoints

@ Kleene: f: [C — C] has least fixpoint fix f = Jub{f(") 1 | n € N};
@ fixpoints for several functions at once: theorem of Bekic;

12/23



Background Domain Theory

Fixpoints

@ Kleene: f: [C — C] has least fixpoint fix f = Jub{f(") 1 | n € N};
@ fixpoints for several functions at once: theorem of Bekic;

@ to prove continuity, compose elementary results:

e f: Ax B — Ciscontinuous iff it is so in each argument separately;
@ currying/uncurrying are continuous;

e fix: [C — C] — C is continuous;

@ and many more.

12/23



Background Monads

Outline

e Background

@ Monads

13/23



Monads in the Category CPO

(M, ret, bind) where

14/23



Monads in the Category CPO

(M, ret, bind) where

@ M : CPO — CPO is a functor;

14/23



Monads in the Category CPO

(M, ret, bind) where

@ M: CPO — CPO is a functor;
e for all CPOs X, a function rety : [X —» M X];

14/23



Monads in the Category CPO

(M, ret, bind) where

@ M: CPO — CPO is a functor;
e for all CPOs X, a function rety : [X —» M X];

e for all CPOs X, Y a function bindxy : [M X — [[X > M Y] > M Y] ;
notation: do x « m; m’ for bindxy m (1x = m’);

14/23



Monads in the Category CPO

(M, ret, bind) where

@ M: CPO — CPO is a functor;
e for all CPOs X, a function rety : [X —» M X];

e for all CPOs X, Y a function bindxy : [M X — [[X > M Y] > M Y] ;
notation: do x « m; m’ for bindxy m (1x = m’);
@ monad laws:
e dox«— m; ret x=m;
e dox «retx; fx =fx;
e doy«—(doxem; fx),gy=doxem;, doy«—fx; gy.

14/23



Example: the ldentity Monad

@ identity functor id : CPO — CPO;
@ V(A :CPO)(a: A), rety a = a;
@ V(A B:CPO)m:idA)(f:[A— idB]), bindmf:= fm.

15/23



Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

16/23



Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:
@ contTg: CPO - CPO=2X= [[X > MR] - MR];

16/23



Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

@ contTgr : CPO - CPO = 1X = [[X - M R] > MR];
@ V(X :CPO)(x: X), retx x=2A(k : [X > MR]) =k x;

16/23



Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

@ contTgr : CPO - CPO = 1X = [[X - M R] > MR];

@ V(X :CPO)(x: X), retx x=2A(k : [X > MR]) =k x;

@ V(X Y :CPO)(m: contTg X)(f: [X — contTr Y]),
bindmf=a(k:[Y —>MR]) = m(a(x:X)=fxk).

Encodes many other monads.

16/23



The Reverse State Monad

Outline

© The Reverse State Monad

17/23



The Reverse State Monad

The Reverse State Monad Transformer in Haskell?

Parameter : monad (M, ret, bind)

’https://hackage.haskell.org/package/rev-state-0.2.0.1
18/23


https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell?

Parameter : monad (M, ret, bind)

revBind mf = A1s = mdo (x,8") « ms’; (x’,s") « f x s; ret (x',8”)

’https://hackage.haskell.org/package/rev-state-0.2.0.1
18/23


https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell?

Parameter : monad (M, ret, bind)

revBind mf = A1s = mdo (x,8") « ms’; (x’,s") « f x s; ret (x',8”)

@ mdo “solves” mutually recursive equations thanks to lazy evaluation

’https://hackage.haskell.org/package/rev-state-0.2.0.1

18/23


https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell?

Parameter : monad (M, ret, bind)

revBind mf = A1s = mdo (x,8") « ms’; (x’,s") « f x s; ret (x',8”)

@ mdo “solves” mutually recursive equations thanks to lazy evaluation;
@ mdo implemented using mfix : [[X - M X] - M X];

’https://hackage.haskell.org/package/rev-state-0.2.0.1
18/23


https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell?

Parameter : monad (M, ret, bind)

revBind mf = A1s = mdo (x,8") « ms’; (x’,s") « f x s; ret (x',8”)

@ mdo “solves” mutually recursive equations thanks to lazy evaluation;
@ mdo implemented using mfix : [[X - M X] - M X];
e mfix defined as A f = fix (Am = bind m f), right?

’https://hackage.haskell.org/package/rev-state-0.2.0.1
18/23


https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell?

Parameter : monad (M, ret, bind)

revBind mf = A1s = mdo (x,8") « ms’; (x’,s") « f x s; ret (x',8”)

@ mdo “solves” mutually recursive equations thanks to lazy evaluation;
@ mdo implemented using mfix : [[X - M X] - M X];
e mfix defined as A f = fix (Am = bind m f), right?

@ we implemented revRet and revBind in Rocq, proved all required
continuities, ... but could not prove monad laws.

’https://hackage.haskell.org/package/rev-state-0.2.0.1
18/23


https://hackage.haskell.org/package/rev-state-0.2.0.1

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];
@ which is not defined as A f = fix (Am = bind m f);

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];
@ which is not defined as A f = fix (Am = bind m f);
@ no general definition for mfix, but specification as 4 axioms;

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];
@ which is not defined as A f = fix (Am = bind m f);
@ no general definition for mfix, but specification as 4 axioms;
@ implemented by most monads; e.g. for identity, mfix = fix;

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];
@ which is not defined as A f = fix (Am = bind m f);
@ no general definition for mfix, but specification as 4 axioms;
@ implemented by most monads; e.g. for identity, mfix = fix;
@ go back to Haskell’s version?

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];
@ which is not defined as A f = fix (A m = bind m f);
@ no general definition for mfix, but specification as 4 axioms;
@ implemented by most monads; e.g. for identity, mfix = fix;
@ go back to Haskell’s version?

revBind mf = A1s = mdo (x,8") «ms’; (x',s") « fx s;ret (x',s”)

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

What Went Wrong?

A closer look at Haskell code reveals that:
@ parameter monad M must implement mfix : [[X - M X] - M X];
@ which is not defined as A f = fix (A m = bind m f);
@ no general definition for mfix, but specification as 4 axioms;
@ implemented by most monads; e.g. for identity, mfix = fix;
@ go back to Haskell’s version?

revBind m f = A= mdo (x, 8" )«=m75; (X . s)—17%s; ret(xs7)

19/23


https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

20/23



The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

@ define revStateT M S as YR.contTg (M(S x R)); obtain revRet,
revBind satisfying monad laws;

20/23



The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

@ define revStateT M S as YR.contTg (M(S x R)); obtain revRet,
revBind satisfying monad laws;

@ define get = A(k : [S —» M (S x R)]) = mfix (k o fst);

20/23



The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

@ define revStateT M S as YR.contTg (M(S x R)); obtain revRet,
revBind satisfying monad laws;

@ define get = A(k : [S —» M (S x R)]) = mfix (k o fst);
puts=A(k:[1>M(SxR)])=do(_,r) < k Ly; ret(s,r).

20/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

21/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

@ state flows backwards (unlike forwards state monad)::
put x; put y = put x;

21/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:
@ state flows backwards (unlike forwards state monad)::
put x; put y = put x;
@ output flows forward (like in forward state monad):
do x « get;doy <« get;mx y = do x « get, m x Xx;

21/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:
@ state flows backwards (unlike forwards state monad)::
put x; put y = put x;
@ output flows forward (like in forward state monad):
do x « get;doy <« get;mx y = do x « get, m x Xx;
e forf:[S — S], do x « get; put (f x) = put (fix f)

21/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:
@ state flows backwards (unlike forwards state monad)::
put x; put y = put x;
@ output flows forward (like in forward state monad):
do x « get;doy <« get;mx y = do x « get, m x Xx;
e forf:[S — S], do x « get; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

21/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

@ state flows backwards (unlike forwards state monad)::
put x; put y = put x;

@ output flows forward (like in forward state monad):
do x « get;doy <« get;mx y = do x « get, m x Xx;

e forf:[S — S], do x « get; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

e do x « get; put(0 :: map (1+) x) = put(fix(Ax = (0 :: map (1+) x)))
=put (0::1::2::...): proper Stream value, no causality paradox;

21/23



The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

@ state flows backwards (unlike forwards state monad)::
put x; put y = put x;
@ output flows forward (like in forward state monad):
do x « get;doy <« get;mx y = do x « get, m x Xx;
e forf:[S — S], do x « get; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:
e do x « get; put(0 :: map (1+) x) = put(fix(Ax = (0 :: map (1+) x)))
=put (0::1::2::...): proper Stream value, no causality paradox;
e do b « get; put(=b) = put(fix(1b = (=b))) = put L: undefined
Boolean value, causality paradox.

21/23



Conclusion & Future Work

Outline

e Conclusion & Future Work

22/23



Still Work in Progress

@ formalized Reverse State Monad Transformer in Rocq:
@ for now, only 2 simple programs & equational reasoning.

23/23



Still Work in Progress

@ formalized Reverse State Monad Transformer in Rocq:
@ for now, only 2 simple programs & equational reasoning.

@ application: parsers; Reverse State Monad to deal with lookahead

23/23



Still Work in Progress

@ formalized Reverse State Monad Transformer in Rocq:
@ for now, only 2 simple programs & equational reasoning.

@ application: parsers; Reverse State Monad to deal with lookahead
@ other proof techniques to be investigated (Hoare Logics, .. .).

23/23



Still Work in Progress

@ formalized Reverse State Monad Transformer in Rocq:
@ for now, only 2 simple programs & equational reasoning.

@ application: parsers; Reverse State Monad to deal with lookahead
@ other proof techniques to be investigated (Hoare Logics, .. .).
@ there is a future in the past®.

3Christopher Nolan, Tenet, 2020.
23/23



	Examples
	Background
	Domain Theory
	Monads

	The Reverse State Monad
	Conclusion & Future Work

