
The Reverse State Monad in Rocq (Work in Progress)

David Nowak (CNRS, Lille)
Vlad Rusu (Inria, Lille)

FROM Symposium, Iaşi, Romania, Sept. 17-19, 2025

1 / 23

Monads

adding features (effects) to functional languages while keeping purity:
exceptions;
mutable state;
nondeterminism;
concurrency;
continuations;
. . .

pioneered by Haskell: rich library of monads and monad transformers;

Reverse State Monad: effect is backwards causality;

encoding the monad in Rocq - towards proving reverse programs
https://gitlab.inria.fr/haddock/revstate.

2 / 23

https://gitlab.inria.fr/haddock/revstate

Examples

Outline

1 Examples

2 Background

3 The Reverse State Monad

4 Conclusion & Future Work

3 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Newcomb’s Paradox

Game: player vs. host

state of the game = 2 boxes : #1 transparent contains 1€; #2 opaque;
rules of the game:

host discreetly (without player seeing) puts some money in box #2;
then player chooses: either both boxes, or just box #2;

current game: host says is able to use backwards causality
if player’s future choice = both boxes, host puts 1€ in box #2;
if player’s future choice = box #2, host puts 1.000.000€ in it;

strategy of the player determined by belief in backwards causality:
yes : choose box #2;
no : choose both boxes.

4 / 23

Examples

Backwards Causality with the Reverse State Monad

A more formal example:

assume a state containing an infinite Stream over N with functions
:: : N→ Stream → Stream :

map : (N→ N)→ Stream → Stream;

do x ← get reads the (whole) state & stores it in x;

put y changes the state to y.

5 / 23

Examples

Backwards Causality with the Reverse State Monad

A more formal example:

assume a state containing an infinite Stream over N with functions
:: : N→ Stream → Stream :

map : (N→ N)→ Stream → Stream;

do x ← get reads the (whole) state & stores it in x;

put y changes the state to y.

5 / 23

Examples

Backwards Causality with the Reverse State Monad

A more formal example:

assume a state containing an infinite Stream over N with functions
:: : N→ Stream → Stream :

map : (N→ N)→ Stream → Stream;

do x ← get reads the (whole) state & stores it in x;

put y changes the state to y.

5 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Examples

Backwards Causality with the Reverse State Monad

What does do x ← get ; put(0 :: map (1+) x) do ?

do x ← get reads future state, after put(0 :: map (1+) x);

hence state simultaneously contains x and (0 :: map (1+) x);

hence x = 0 :: map (1+) x); 1-line program solves fixpoint equation,
finds unique solution x = 0 :: 1 :: 2 :: . . . there must be a trick!

(. . . a fixpoint is hidden inside the program . . .)

do b ← get ; put ¬b : equation b = ¬b has no solution in Booleans
. . . but has solution in CPO of Booleans;

“fixpoint”, “CPOs” : domain theory (& our library in Rocq)!

6 / 23

Background

Outline

1 Examples

2 Background
Domain Theory
Monads

3 The Reverse State Monad

4 Conclusion & Future Work

7 / 23

Background Domain Theory

Outline

1 Examples

2 Background
Domain Theory
Monads

3 The Reverse State Monad

4 Conclusion & Future Work

8 / 23

Background Domain Theory

Complete Partial Orders (CPOs)

(C ,⪯,⊥) with set C, order ⪯ on C , ⊥ least element of C;

⪯ interpreted as definition order, with ⊥ interpreted as undefined;

each increasing sequence1 S has least upper bound lub S.

Examples:

flat CPO N ∪ {⊥}: order restricted to N is equality;

Stream over N ∪ {⊥}: pointwise order s ⊑ s′ iff ∀i ∈ N, s[i] ⪯ s′[i].

1Actually, each directed set.
9 / 23

Background Domain Theory

Complete Partial Orders (CPOs)

(C ,⪯,⊥) with set C, order ⪯ on C , ⊥ least element of C;

⪯ interpreted as definition order, with ⊥ interpreted as undefined;

each increasing sequence1 S has least upper bound lub S.

Examples:

flat CPO N ∪ {⊥}: order restricted to N is equality;

Stream over N ∪ {⊥}: pointwise order s ⊑ s′ iff ∀i ∈ N, s[i] ⪯ s′[i].

1Actually, each directed set.
9 / 23

Background Domain Theory

Complete Partial Orders (CPOs)

(C ,⪯,⊥) with set C, order ⪯ on C , ⊥ least element of C;

⪯ interpreted as definition order, with ⊥ interpreted as undefined;

each increasing sequence1 S has least upper bound lub S.

Examples:

flat CPO N ∪ {⊥}: order restricted to N is equality;

Stream over N ∪ {⊥}: pointwise order s ⊑ s′ iff ∀i ∈ N, s[i] ⪯ s′[i].

1Actually, each directed set.
9 / 23

Background Domain Theory

Complete Partial Orders (CPOs)

(C ,⪯,⊥) with set C, order ⪯ on C , ⊥ least element of C;

⪯ interpreted as definition order, with ⊥ interpreted as undefined;

each increasing sequence1 S has least upper bound lub S.

Examples:

flat CPO N ∪ {⊥}: order restricted to N is equality;

Stream over N ∪ {⊥}: pointwise order s ⊑ s′ iff ∀i ∈ N, s[i] ⪯ s′[i].

1Actually, each directed set.
9 / 23

Background Domain Theory

Continuous Functions

for posets C ,C ′: f : C → C ′ is monotonic iff x ⪯ y implies f x ⪯′ f y ;

for CPOs C ,C ′: f : C → C ′ is continuous iff f is monotonic & for all
increasing sequence S , f (lub S) = lub ′ (f S);

notation [C → C ′] = set of continuous functions between CPOs C, C ′;

examples : constant, identity, compositions of continuous functions;

structure : CPOs + continuous functions = category CPO.

10 / 23

Background Domain Theory

Continuous Functions

for posets C ,C ′: f : C → C ′ is monotonic iff x ⪯ y implies f x ⪯′ f y ;

for CPOs C ,C ′: f : C → C ′ is continuous iff f is monotonic & for all
increasing sequence S , f (lub S) = lub ′ (f S);

notation [C → C ′] = set of continuous functions between CPOs C, C ′;

examples : constant, identity, compositions of continuous functions;

structure : CPOs + continuous functions = category CPO.

10 / 23

Background Domain Theory

Continuous Functions

for posets C ,C ′: f : C → C ′ is monotonic iff x ⪯ y implies f x ⪯′ f y ;

for CPOs C ,C ′: f : C → C ′ is continuous iff f is monotonic & for all
increasing sequence S , f (lub S) = lub ′ (f S);

notation [C → C ′] = set of continuous functions between CPOs C, C ′;

examples : constant, identity, compositions of continuous functions;

structure : CPOs + continuous functions = category CPO.

10 / 23

Background Domain Theory

Continuous Functions

for posets C ,C ′: f : C → C ′ is monotonic iff x ⪯ y implies f x ⪯′ f y ;

for CPOs C ,C ′: f : C → C ′ is continuous iff f is monotonic & for all
increasing sequence S , f (lub S) = lub ′ (f S);

notation [C → C ′] = set of continuous functions between CPOs C, C ′;

examples : constant, identity, compositions of continuous functions;

structure : CPOs + continuous functions = category CPO.

10 / 23

Background Domain Theory

Continuous Functions

for posets C ,C ′: f : C → C ′ is monotonic iff x ⪯ y implies f x ⪯′ f y ;

for CPOs C ,C ′: f : C → C ′ is continuous iff f is monotonic & for all
increasing sequence S , f (lub S) = lub ′ (f S);

notation [C → C ′] = set of continuous functions between CPOs C, C ′;

examples : constant, identity, compositions of continuous functions;

structure : CPOs + continuous functions = category CPO.

10 / 23

Background Domain Theory

CPO is Cartesian Closed

For CPOs (C ′ ⪯,⊥), (C ′,⪯′,⊥′), the following are CPOs:

product : (C × C ′,⊑, (⊥,⊥′)) with pair-pointwise ⊑;

exponentiation: ([C → C ′],⊑, λ ⇒ ⊥′) with function-pointwise ⊑.

11 / 23

Background Domain Theory

Fixpoints

Kleene: f : [C → C] has least fixpoint fix f ≜ lub{f (n)⊥ | n ∈ N};

fixpoints for several functions at once: theorem of Bekić;
to prove continuity, compose elementary results:

f : A × B → C is continuous iff it is so in each argument separately;
currying/uncurrying are continuous;
fix : [C → C]→ C is continuous;
and many more.

12 / 23

Background Domain Theory

Fixpoints

Kleene: f : [C → C] has least fixpoint fix f ≜ lub{f (n)⊥ | n ∈ N};

fixpoints for several functions at once: theorem of Bekić;
to prove continuity, compose elementary results:

f : A × B → C is continuous iff it is so in each argument separately;
currying/uncurrying are continuous;
fix : [C → C]→ C is continuous;
and many more.

12 / 23

Background Domain Theory

Fixpoints

Kleene: f : [C → C] has least fixpoint fix f ≜ lub{f (n)⊥ | n ∈ N};

fixpoints for several functions at once: theorem of Bekić;
to prove continuity, compose elementary results:

f : A × B → C is continuous iff it is so in each argument separately;
currying/uncurrying are continuous;
fix : [C → C]→ C is continuous;
and many more.

12 / 23

Background Monads

Outline

1 Examples

2 Background
Domain Theory
Monads

3 The Reverse State Monad

4 Conclusion & Future Work

13 / 23

Background Monads

Monads in the Category CPO

(M, ret , bind) where

M : CPO→ CPO is a functor;

for all CPOs X , a function retX : [X → M X];

for all CPOs X , Y a function bindX ,Y : [M X → [[X → M Y]→ M Y] ;
notation: do x ← m; m′ for bindX ,Y m (λ x ⇒ m′);

monad laws:
do x ← m; ret x = m;
do x ′ ← ret x; f x′ = f x;
do y ← (do x ← m; f x); g y = do x ← m; do y ← f x; g y.

14 / 23

Background Monads

Monads in the Category CPO

(M, ret , bind) where

M : CPO→ CPO is a functor;

for all CPOs X , a function retX : [X → M X];

for all CPOs X , Y a function bindX ,Y : [M X → [[X → M Y]→ M Y] ;
notation: do x ← m; m′ for bindX ,Y m (λ x ⇒ m′);

monad laws:
do x ← m; ret x = m;
do x ′ ← ret x; f x′ = f x;
do y ← (do x ← m; f x); g y = do x ← m; do y ← f x; g y.

14 / 23

Background Monads

Monads in the Category CPO

(M, ret , bind) where

M : CPO→ CPO is a functor;

for all CPOs X , a function retX : [X → M X];

for all CPOs X , Y a function bindX ,Y : [M X → [[X → M Y]→ M Y] ;
notation: do x ← m; m′ for bindX ,Y m (λ x ⇒ m′);

monad laws:
do x ← m; ret x = m;
do x ′ ← ret x; f x′ = f x;
do y ← (do x ← m; f x); g y = do x ← m; do y ← f x; g y.

14 / 23

Background Monads

Monads in the Category CPO

(M, ret , bind) where

M : CPO→ CPO is a functor;

for all CPOs X , a function retX : [X → M X];

for all CPOs X , Y a function bindX ,Y : [M X → [[X → M Y]→ M Y] ;
notation: do x ← m; m′ for bindX ,Y m (λ x ⇒ m′);

monad laws:
do x ← m; ret x = m;
do x ′ ← ret x; f x′ = f x;
do y ← (do x ← m; f x); g y = do x ← m; do y ← f x; g y.

14 / 23

Background Monads

Monads in the Category CPO

(M, ret , bind) where

M : CPO→ CPO is a functor;

for all CPOs X , a function retX : [X → M X];

for all CPOs X , Y a function bindX ,Y : [M X → [[X → M Y]→ M Y] ;
notation: do x ← m; m′ for bindX ,Y m (λ x ⇒ m′);

monad laws:
do x ← m; ret x = m;
do x ′ ← ret x; f x′ = f x;
do y ← (do x ← m; f x); g y = do x ← m; do y ← f x; g y.

14 / 23

Background Monads

Example: the Identity Monad

identity functor id : CPO→ CPO;

∀(A : CPO)(a : A), retA a = a;

∀(A B : CPO)(m : id A)(f : [A → id B]), bind m f := f m.

15 / 23

Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

contTR : CPO→ CPO = λX ⇒ [[X → M R]→ M R];

∀(X : CPO)(x : X), retX x = λ (k : [X → M R])⇒ k x;

∀(X Y : CPO)(m : contTR X)(f : [X → contTR Y]),

bind m f = λ (k : [Y → M R])⇒ m (λ (x : X)⇒ f x k).

Encodes many other monads.

16 / 23

Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

contTR : CPO→ CPO = λX ⇒ [[X → M R]→ M R];

∀(X : CPO)(x : X), retX x = λ (k : [X → M R])⇒ k x;

∀(X Y : CPO)(m : contTR X)(f : [X → contTR Y]),

bind m f = λ (k : [Y → M R])⇒ m (λ (x : X)⇒ f x k).

Encodes many other monads.

16 / 23

Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

contTR : CPO→ CPO = λX ⇒ [[X → M R]→ M R];

∀(X : CPO)(x : X), retX x = λ (k : [X → M R])⇒ k x;

∀(X Y : CPO)(m : contTR X)(f : [X → contTR Y]),

bind m f = λ (k : [Y → M R])⇒ m (λ (x : X)⇒ f x k).

Encodes many other monads.

16 / 23

Background Monads

Example: the Continuation Monad Transformer

Parameterized by monad M and CPO R:

contTR : CPO→ CPO = λX ⇒ [[X → M R]→ M R];

∀(X : CPO)(x : X), retX x = λ (k : [X → M R])⇒ k x;

∀(X Y : CPO)(m : contTR X)(f : [X → contTR Y]),

bind m f = λ (k : [Y → M R])⇒ m (λ (x : X)⇒ f x k).

Encodes many other monads.

16 / 23

The Reverse State Monad

Outline

1 Examples

2 Background

3 The Reverse State Monad

4 Conclusion & Future Work

17 / 23

The Reverse State Monad

The Reverse State Monad Transformer in Haskell2

Parameter : monad (M, ret , bind)

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

mdo “solves” mutually recursive equations thanks to lazy evaluation;

mdo implemented using mfix : [[X → M X]→ M X];

mfix defined as λ f ⇒ fix (λm ⇒ bind m f), right?

we implemented revRet and revBind in Rocq, proved all required
continuities, . . . but could not prove monad laws.

2https://hackage.haskell.org/package/rev-state-0.2.0.1
18 / 23

https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell2

Parameter : monad (M, ret , bind)

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

mdo “solves” mutually recursive equations thanks to lazy evaluation;

mdo implemented using mfix : [[X → M X]→ M X];

mfix defined as λ f ⇒ fix (λm ⇒ bind m f), right?

we implemented revRet and revBind in Rocq, proved all required
continuities, . . . but could not prove monad laws.

2https://hackage.haskell.org/package/rev-state-0.2.0.1
18 / 23

https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell2

Parameter : monad (M, ret , bind)

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

mdo “solves” mutually recursive equations thanks to lazy evaluation;

mdo implemented using mfix : [[X → M X]→ M X];

mfix defined as λ f ⇒ fix (λm ⇒ bind m f), right?

we implemented revRet and revBind in Rocq, proved all required
continuities, . . . but could not prove monad laws.

2https://hackage.haskell.org/package/rev-state-0.2.0.1
18 / 23

https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell2

Parameter : monad (M, ret , bind)

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

mdo “solves” mutually recursive equations thanks to lazy evaluation;

mdo implemented using mfix : [[X → M X]→ M X];

mfix defined as λ f ⇒ fix (λm ⇒ bind m f), right?

we implemented revRet and revBind in Rocq, proved all required
continuities, . . . but could not prove monad laws.

2https://hackage.haskell.org/package/rev-state-0.2.0.1
18 / 23

https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell2

Parameter : monad (M, ret , bind)

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

mdo “solves” mutually recursive equations thanks to lazy evaluation;

mdo implemented using mfix : [[X → M X]→ M X];

mfix defined as λ f ⇒ fix (λm ⇒ bind m f), right?

we implemented revRet and revBind in Rocq, proved all required
continuities, . . . but could not prove monad laws.

2https://hackage.haskell.org/package/rev-state-0.2.0.1
18 / 23

https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

The Reverse State Monad Transformer in Haskell2

Parameter : monad (M, ret , bind)

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

mdo “solves” mutually recursive equations thanks to lazy evaluation;

mdo implemented using mfix : [[X → M X]→ M X];

mfix defined as λ f ⇒ fix (λm ⇒ bind m f), right?

we implemented revRet and revBind in Rocq, proved all required
continuities, . . . but could not prove monad laws.

2https://hackage.haskell.org/package/rev-state-0.2.0.1
18 / 23

https://hackage.haskell.org/package/rev-state-0.2.0.1

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

revBind m f = λ s ⇒ mdo (x, s′′)← m s′; (x′, s′)← f x s; ret (x′, s′′)

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

What Went Wrong?

A closer look at Haskell code reveals that:

parameter monad M must implement mfix : [[X → M X]→ M X];

which is not defined as λ f ⇒ fix (λm ⇒ bind m f);

no general definition for mfix, but specification as 4 axioms;

implemented by most monads; e.g. for identity, mfix = fix;

go back to Haskell’s version?

revBind m f =���λ s ⇒���mdo ((((((((
(x, s′′)← m s′;((((((((

(x′, s′)← f x s;������ret (x′, s′′)

19 / 23

https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Monad-Fix.html

The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

define revStateT M S as ∀R .contTR (M(S × R)); obtain revRet ,
revBind satisfying monad laws;

define get = λ (k : [S → M (S × R)])⇒ mfix (k ◦ fst);

put s = λ (k : [1→ M (S × R)])⇒ do (, r)← k ⊥1; ret (s, r).

20 / 23

The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

define revStateT M S as ∀R .contTR (M(S × R)); obtain revRet ,
revBind satisfying monad laws;

define get = λ (k : [S → M (S × R)])⇒ mfix (k ◦ fst);

put s = λ (k : [1→ M (S × R)])⇒ do (, r)← k ⊥1; ret (s, r).

20 / 23

The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

define revStateT M S as ∀R .contTR (M(S × R)); obtain revRet ,
revBind satisfying monad laws;

define get = λ (k : [S → M (S × R)])⇒ mfix (k ◦ fst);

put s = λ (k : [1→ M (S × R)])⇒ do (, r)← k ⊥1; ret (s, r).

20 / 23

The Reverse State Monad

Alternative: Using the Continuation Monad Transformer

define revStateT M S as ∀R .contTR (M(S × R)); obtain revRet ,
revBind satisfying monad laws;

define get = λ (k : [S → M (S × R)])⇒ mfix (k ◦ fst);

put s = λ (k : [1→ M (S × R)])⇒ do (, r)← k ⊥1; ret (s, r).

20 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

The Reverse State Monad

Why is this a Reverse State Monad Transformer?

We proved in Rocq, using the 4 laws of mfix:

state flows backwards (unlike forwards state monad)::
put x; put y = put x;

output flows forward (like in forward state monad):
do x ← get ; do y ← get ;m x y = do x ← get ;m x x;

for f : [S → S], do x ← get ; put (f x) = put (fix f)
fixpoints values determine whether backward causality is paradoxical:

do x ← get ; put(0 :: map (1+) x) = put(fix(λ x ⇒ (0 :: map (1+) x)))
= put (0 :: 1 :: 2 :: . . .) : proper Stream value, no causality paradox;
do b ← get ; put(¬b) = put(fix(λ b ⇒ (¬b))) = put ⊥: undefined
Boolean value, causality paradox.

21 / 23

Conclusion & Future Work

Outline

1 Examples

2 Background

3 The Reverse State Monad

4 Conclusion & Future Work

22 / 23

Conclusion & Future Work

Still Work in Progress

formalized Reverse State Monad Transformer in Rocq:

for now, only 2 simple programs & equational reasoning.

application: parsers; Reverse State Monad to deal with lookahead

other proof techniques to be investigated (Hoare Logics, . . .).

there is a future in the past3.

3Christopher Nolan, Tenet, 2020.
23 / 23

Conclusion & Future Work

Still Work in Progress

formalized Reverse State Monad Transformer in Rocq:

for now, only 2 simple programs & equational reasoning.

application: parsers; Reverse State Monad to deal with lookahead

other proof techniques to be investigated (Hoare Logics, . . .).

there is a future in the past3.

3Christopher Nolan, Tenet, 2020.
23 / 23

Conclusion & Future Work

Still Work in Progress

formalized Reverse State Monad Transformer in Rocq:

for now, only 2 simple programs & equational reasoning.

application: parsers; Reverse State Monad to deal with lookahead

other proof techniques to be investigated (Hoare Logics, . . .).

there is a future in the past3.

3Christopher Nolan, Tenet, 2020.
23 / 23

Conclusion & Future Work

Still Work in Progress

formalized Reverse State Monad Transformer in Rocq:

for now, only 2 simple programs & equational reasoning.

application: parsers; Reverse State Monad to deal with lookahead

other proof techniques to be investigated (Hoare Logics, . . .).

there is a future in the past3.

3Christopher Nolan, Tenet, 2020.
23 / 23

	Examples
	Background
	Domain Theory
	Monads

	The Reverse State Monad
	Conclusion & Future Work

