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Contributors

e /Kteam

o Brandon Moore (the Block Model, overall design)

o Mihai Calancea (original prototype)

o B. Bailey, T. Serbanuta, N. Watson, P. Raduletu (R&D)
e Math Proof Generation team

o D. Lucanu (pinning the ASCII syntax for the Block language)
e Xiaohong Chen (making sure we stay on task and deliver)
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Plan of the talk

1. Vision
o Certified Execution: mathematical proofs of program execution
2. Research
o Background: Proofs and (zk) SNARKs
o Adapting proofs for SNARKs: the BLOCK model
3. Example
o Propositional logic using the BLOCK model
4. Implementation
o Compiling blocks into circuits
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Vision




m Pi Squared

Pi Squared Web3 Vision
1. Program in any langquage

2. Settle any (zero knowledge) proof

3. Reach lightning fast (weak/generalized) consensus
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Breaking Programming Language
Barriers Using Formal Semantics

Programming Languages Language Tools Separation of Concern
o 1 —— e Language design
Nt || e 7 " e Tool implementation

\\ Plug & Play your language

Symbolic Executor

Correct by Construction

Model Checker

Program Verifier
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Pi% = Proof of Proof

Mathematical
Proof

Zero Knowledge
Proof
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Pi? (Proof of Proof) Workflow
l

)
I I P Math Proof Checker P
Program P Interpreter for L Math Proof ZK Proof
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Execution Proof Hints
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(I/0)
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Research

Background: Proofs and (zk)Snarks
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SNARK for Mathematical Proofs

e Want efficient (zk)SNARK proof for validity of a mathematical proof
e ASNARK s a system for cryptographic “proofs” (aka “receipts”) of claims
About a relation R between “instances” and “witnesses”
Public input of a claim is the instance x. Claim is “I know a w with (x,w) in R”
Succinct: receipt small, efficiently checked
Noninteractive: receiptis a string checkable by anyone
ARgument: computational rather than absolute security
o of Knowledge
e We call SNARK proofs “receipts” to distinguish from mathematical proofs

O O O O O
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Proof and Circuit codesign

Plan:
e review the structure of mathematical proofs
e review the features of zkSNARKs
e restrict the allowed form of mathematical proof rules
o to be efficiently checkable with zk circuits.
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Review Proof Structure

Ax2 Ax1
HA—((B—A)—A))—((A—(B—A))—(A—A)) FA—((B—A)—A)
N /
=H(A—((B—A)—A))—((A—>(B—A))—(A—A)) FA—((B—A)—A)

MP

H(A—(B—A))—(A—A)

Ax1
All hypotheses must equal a /A\ ~FA—(B—A)
/

conclusion of a predecessor ﬁ_)(B_)A))_,(A_)A) ~A—(B—A)

\ FA—A

MP
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Review Proof Rule Structure

e Rule are parameterized ~FA—B A
e Lists of hypotheses and conclusions MP(A,B)
written using the parameters -8
e We call each hypothesis or
conclusion a statement / claim Ax1(A.B)
e Claims could be in different FA—(B—A) ’
relations, e.g.,
m ¢ iswell-formed

m Xxisfreeing Ax2(A,B,C)
... ~(A—(B—C))—((A—>B)—(A—C))
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Review zkSNARK

e Primitive data elements of a finite field, usually IFp (some schemes F_,)
e Native form of the instance and relation are vectors of field elements
e Therelation is defined with arithmetic circuits or with polynomial constraints.
o RI1CS special case of degree 2 polynomials, also expresses circuits.
m Constraints described by matrices A,B,C over the field.
m Vectorzformed from instance and witness (and a constant 1)
m Check equation (Az)o(Bz) = (Cz), where o is element-wise product.

i red, Inc. All rights reserved. FROM °25| 14
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Review zkSNARK Randomization

Access to “random” inputs through “Fiat-Shamir heuristic”
o from public-coin interactive protocol to a non-interactive proof.
With randomness we have permutation and lookup arguments
Two lists of field elements a ,....a_and b_,...,b _
Permutation argument enforces that lists are permutations
Lookup argument enforces a subset relationship {a.:i € 1..n}§{bj:j €1...m}
List elements are field elements, or easy generalization to fixed-size tuples

red, Inc. All rights reserved. FROM *25| 15
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Permutation from Polynomials

e Permutation and lookup argument use polynomials, permutation is simple
e [1(a-x)-M(b.-x) is a degree O(n+m) polynomialin x
o Uniformly 0 if the lists are permutations
o Otherwise at most O(n+m) roots, while usually |F| is very large
o Just evaluate at a random value a and require the result is zero
e Lookup uses similarideas, more complicated expressions
e Both generalize to lists of fixed-size tuples of field elements
o codetuple (ao,...,ak) as polynomial a0+alx+...+akxk evaluated at random 8
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Research

Adapting proofs for SNARKs
The Blocks model
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Adapting Proofs for SNARKs

e Translate instances of a proof rule into small section of witness or circuit.
e Only interaction between different proof steps is checking hypotheses are
satisfied by other rule’s conclusions. Adapt to use lookup arguments

e Need to flatten claims to tuples of atomic values / field elements

o Handling terms: Must translate syntax of formulas to additional claims
e Problem: Lookup does not enforce DAG structure.

o Solution: add “depth” to claims and extra hypotheses to proof rules

i red, Inc. All rights reserved. FROM °25| 18
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Breaking Cycles

e Add an additional depth argument to claims: i, @ instead of F¢
o Canreadt @ as “p has a proof tree of depth at most k”

-A—B A - A>B F A k1<k k2 <k

MP(AB) [ > MP(A,B,k,k1,k2)

I—kB

-B

e Not all relations need a depth parameter
o Proof rules might simply never depend on hypothesis of the same kind
o Orrules emitting claims of that kind may only allow “structural recursion”
so ensuring certain other things are acyclic is sufficient

red, Inc. All rights reserved. FROM °25| 19
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Flattening Syntax

Eliminate explicit syntax in terms by
e Introducing extra relations about relating terms to immediate subterms
o e.g.is_impl(T,A,B) means T represents term A->B
e Give proof rules extra arguments naming all terms and subterms, extra
hypothesis using new relations. Now claim arguments are just variables
e (Thisisanindependent transformation from adding depths, will do both)

-A>B  HA T A is_impl(T,A,B)

MP(A,B) [ > . MP(T.A,B)

-B

i red, Inc. All rights reserved. FROM °25| 20



m Pi Squared

Flattening Syntax - Terms

e To use flattened rules, need syntax claims like is_impl(T,A,B)

e Flattened proof rules similar to use of Datalog for program analysis
o there the syntax facts would be supplied as a preloaded table

e To fit the overall design, let rules emit these facts

e Attempt to definearule

Deflmpl(T,A,B)
is impl(T,A,B)
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Flattening Syntax - Terms

e Wantto demand A,B to be terms; Need depths to prevent cyclic terms

term(Aka) term(B,kb) ka<k kb<k

Deflmpl(T,A,B,k,ka,kb)
term(T,k) is impl(T,A,B)

e Butalso need to prevent conflicting definitions.
o Can’tallow bothis_impl(T,A,A) and is_impl(T,C,D)

] Pi red, Inc. All rights reserved. FROM °25| 22
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Unique Outputs

term(A,ka) term(B,kb) ka<k kb<k
Deflmpl(T,A,B,k,ka,kb)

UNIQUE termdef(T) term(T,k) is impl(T,A,B)

e TheUNIQUE termdef(T)istheunique outputconstraint
o Will enforce that no other step in the proof has same unique output
e Now if we try to have both is_impl(T,A,A) and is_impl(T,C,D) with two instances
of the Deflmpl rule, the unique tags conflict
e Rules defining all other sorts of terms, such as conjunction will also have a
UNIQUE termdef(T)unique output, with the same relation <termdef>
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Example

Propositional Logic in the BLOCK model
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Example: ASCII Blocks definition

block def_term_bot(B): block axiom1(T; TA,TB,TI): // (TA-> (TB -> TA))
is_bot(B), proved2(T,0) -: is_impl(TL,TB,TA), is_impl(T,TA,TI).
UNIQUE wf_term(B), wf_term2(B, 0) -: .
block axiom2(T; TA, TB, TC, THB, THC, TI, THI, TIH):

block def_term_mvar(T, V): proved2(T, 0) -:
is_mvar(T, V), is_impl(THB,TA,TB), is_impl(THC,TA,TC), is_impl(TI,TB,TC),
UNIQUE wf_term(T), wf_term2(T, 0) -: . is_impl(THI,TATI), is_impl(TIH,THB,THC),
is_impl(T,THL,TIH).
block def_term_impl(T, TA, TB, d, d_A, d_B):
is_impl(T, TA, TB), block modus_ponens(T; TA, TB, d, d_A, d_B):
UNIQUE wf_term(T), wf_term2(T, d) proved2(TB, d) -:
- wf_term2(TA, d_A), wf_term2(TB, d_B), is_impl(T, TA, TB), proved2(T, d_A), proved2(TA, d_B),

inc_max(d, d_A, d_B). inc_max(d, d_A, d_B).

© 2025 Pi Squared, Inc. All rights reserved. FROM °25| 25
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Example: A > A proof transcript

e Syntax construction of all used formulas. mstantiated blocks \
e Lastarguments of def_term_impl - depths

block def_term_mvar(T, V):
is_mvar(T, V),

def_term_mvar(1, 0) //v0orA
UNIQUE wf_term(T), wf_term2(T, 0) -: .

def_term_impl(2,1,1, 1,0,0) //A>A

def_term_impl(3,1,2, 2,0,1) //A>(A>A) block def_term_impl(T, TA, TB, d, d_A, d_B):
def_term_impl(4,1,7, 3,0,2) // A>((A>A)>A) is_impl(T, TA, TB),

def_term_impl(5, 4,6, 4,3,3) // (A>((A>A)>A))>((A>(A>A))>(A>A)) UNIQUE wf_term(T), wf_term2(T, d)

( )
( )

def_term_impl(6, 3,2, 3,2,1) // (A>(A>A))>(A>A) - wi_term2(TA, d_A), wf_term2(TB, d_B),
inc_max(d, d_A, d_B).

def_term_impl(7,2,1, 2,1,0) // (A>A)>A

~

© 2025 Pi Squared, Inc. All rights reserved. FROM °25| 26
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Example: A > A proof transcript

e Logical proofitself / \
e Last arguments of modus_ponens - depths e Instantiated block:

block modus_ponens(T; TA, TB, d, d_A, d_B):

axiom1(3,1,1,2) /] A>(A>A) pr.ov§d2(TB, d) -:

axiom1(4,1,2,7) /] A>((A->A)>A) is_impl(T, TA, TB), proved2(T, d_A),
1 roved2(TA,d_B), inc_max(d,d_A,d_B).

aXi0m2(5, la 2: 1’ 3; 2) 7’ 4: 6) // (Aé((AéA)QA))Q((Aé(AQA))é(AéA)) p v ( - ) ( )

® Terms:
modus_ponens(5,4, 6, 1,0,0)// (A>(A>A))>(A>A) 2:A>A 3:A>(A2A) 4 A>((A-A)>A)
modus_ponens(6, 3,2, 2,1,0)//A>A 5: (A>((A>A)>A))>((A>(A>A))>(A>A))

\6:(A9(A9A))+(A+A)

~J
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Implementation

Compiling blocks into circuits
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Rules to Circuits

proved(T,k1) proved(Ak2) is impl(T,A,B) k>k1 k>k2

XX @>

MP

—>

multiplicity

. (<proved>,Ak2)

proved(B,k)
a,B,...

(<proved>,Tk1)

(<is impl>,T,A,B)

Lookup

B

©

Lookup

bz

(<proved>,B,k)

hyp/conc
accumulator

MP(T,A,B,k,k1,k2)

red, Inc. All rights reserved
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Uniqueness in circuits

e Unique outputs handled with a permutation argument
e Rule circuits output tuples as one side of a permutation argument
e Overall circuit has second witness input which is constrained to be a
permutation of those outputs, and locally constrained to be sorted
e Thenitis easy to checkthere are no duplicates
o (except a specially allowed dummy element, if needed)
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Segment Circuit

a,B,...

Many blocks can also e
be aggregated with el
similar small output block | o aggumulator

inputs

\O __._ uniq
unique / accumulator
Perm
witness
\ Sorted, No

duplicates
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Folding (Nova style)

e Recursively aggregate multiple R1CS instances while preserving the structure
e Standard R1CS: (Az)o(Bz)=(Cz), wherez=(1, x, w)
e Relaxed R1CS: (Az)o(Bz)=u(Cz)+E

o uscalar; E - error vector to absorb extra cross-terms when doing folding
e Given (A,B,C),(E,,u x,) with witness W_, and (A,B,C),(E_,u_,x,) with witness W,

o With new random scalar r, and with z=(1, x,, w,), compute:

m u=u +ru, E=E +r((Az,)o(Bz,)+(Az)o(Bz,) - u (Cz,)-u,(Cz,)) + r’E,
o Then z=(1,x +rx,,w +rw.,) satisfies (Az)o(Bz) = u(Cz) + E
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Optimization problem

e Each segment must have the exact same number of blocks of given type
o Letr, (tobe determined) be the ratio of blocks of type i
o Itmustbethat) r=1
e Public segments are separated from private segments
o Letp. (q.) be the ratio of public (private) segments in a proof transcript
o Wehave) (p.+q)=1
e We want to minimize the total number of segments, i.e., minimize
o max (p,/r)+max (q./r)
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Conclusions

e We have defined and implemented a logic language for generating zkSNARKs
e Suitable for most logical inference-like problems

o like math proofs, but not limited to that
e |tis definitely a better solution than running proof verifiers on top of zkVMs

o Its performance is close to handcrafted circuits for particular problems
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Thank you!

Questions?

© 2025 Pi Squared, Inc. All rights reserved. L FROM *25 | 35
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Case study

using the block model
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Refutation through resolution

e Clauses: 1:x1V x2; 2:-x1V x2; 3:x1 V ~x2; 4:-x1 V -x2
o Encoding 1:12; 2:-12; 3:1 -2; 4:-1-2
Refutation:

e resolution between 1 and 3 using x2 resulting in 5: x1
e resolution between 4 and 2 using -x2 resultingin  6: -x1
e resolution between 5 and 6 using x1 resulting in 7. L

i red, Inc. All rights reserved. FROM °25| 38
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Literals

block def_lit(X,NX):
lit_negation(X,NX),
lit_negation(NX,X),
UNIQUE is_lit(X),
UNIQUE is_lit(NX)

© 2025 Pi Squared, Inc. All rights reserved. FROM °25| 39
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Clauses as lists of literals

block declare_clause(L;K):
clause(L)

ne_list(L,K)

block def_list_empty(L):
is_empty(L), UNIQUE list(L)

block def_list_singleton(L,X):
is_singleton(L,X), ne_list(L,1), UNIQUE list(L)

block def_list_app(L,L1,L2;K,K1,K2):
is_ne_app(L,L1,L2), ne_list(L,K), UNIQUE list(L)

ne_list(L1,K1), ne_list(L2,K2), add(K,K1,K2)

© 2025 Pi Squared, Inc. All rights reserved.
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Resolution

block resolve(L,L1,X,L1a,L2,NX,L2a):
clause(L)
clause(L1),
clause(L2),
lit_negation(X,NX),
remove_lit(L1a,L1,X),
remove_lit(L2a,L2,NX),
is_app(L,L1a,L2a)

block goal(L):

is_empty(L),
clause(L)

© 2025 Pi Squared, Inc. All rights reserved.
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Removing a literal

block remove_singleton_eq(La, L,X):

remove_lit(La, L,X)

is_singleton(L,X),
is_empty(La)

block remove_keep(L, X):
remove_lit(L, L, X)

block remove_app(La, L,X,L1,L2,L1a,L2a):
remove_lit(La,L,X)
is_ne_app(L,L1,L2),
remove_lit(L1a, L1,X),
remove_lit(L2a, L2,X),
is_app(La,Lla,L2a)

© 2025 Pi Squared, Inc. All rights reserved.
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List append as a predicate

block is_app_empty(LO0):
is_app(L0,LO,LO)

is_empty(LO)

block is_app_nonempty(L,L1,L2):

is_app(L,L1,L2)

is_ne_app(L,L1,L2)

block is_app_empty_left(L,L0,K):
is_app(L,LO,L)
is_empty(LO),
ne_list(L,K)

block is_app_empty_right(L,L0,K):

is_app(L,L,L0)
is_empty(LO),
ne_list(L,K)

© 2025 Pi Squared, Inc. All rights reserved.
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Example transcript

def_lit(1,2) def_list_app(9,5,7,2,1,1)
def_lit(3,4) declare_clause(9,2)
def_list_empty(1)

def_list_singleton(2,1) remove_singleton_eq(1, 3, 3)
def_list_singleton(3,3) remove_keep(2, 3)
def_list_app(4,2,3,2,1,1) is_app_empty_right(2, 1, 1)
declare_clause(4,2) remove_app(2,4,3,2,3,2,1)
def_list_singleton(5, 2) remove_singleton_eq(1, 7, 4)
def_list_app(6,5,3,2,1,1) remove_keep(2,4)
declare_clause(6,2) remove_app(2,8,4,2,7,2,1)
def_list_singleton(7, 4) def_list_app(10,2,2,2,1,1)

def_list_app(8,2,7,2,1,1) is_app_nonempty(10,2,2)
declare_clause(8,2) resolve(10, 4, 3, 2, 8,4, 2)

remove_singleton_eq(1, 3, 3) remove_singleton_eq(1, 2, 1)
remove_keep(5, 3) remove_app(1,10,1,2,2,1,1)
is_app_empty_right(5,1,1) remove_singleton_eq(1,5, 2)
remove_app(5, 6, 3, 5, 3, 5,1) remove_app(1,11,2,5,5,1,1)
remove_singleton_eq(1, 7, 4) resolve(1,10,1,1,11,2,1)
remove_keep(5, 4)

remove_app(5,9,4,5,7,5,1)

def_list_app(11,5,5,2,1,1)

is_app_nonempty(11, 5, 5)

resolve(11,6, 3, 5,9, 4, 5)

© 2025 Pi Squared, Inc. All rights reserved.
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Comparison with zkUNSAT

e Oursolutionis~1.2-4.3slower than zkUNSAT. However,

e Oursolution is generic, generated from a particular block model for refutation
o same solution could be applied to many other problems

e zkUNSAT uses an interactive algorithm
o there are known to be faster than non-interactive ones
o but are not suitable for generating zk receipt
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