
© 2025 Pi Squared, Inc. All rights reserved.

SuperVision:
Xiaohong Chen
CTO, Pi Squared

A Logic-Programming Approach to
Arithmetic Circuit Design

Deriving Zero-Knowledge Certificates from Mathematical Proofs

11

Research:
Brandon Moore

Presentation:
Traian Șerbănuță

Vision:
Grigore Roșu
CEO, Pi Squared

© 2025 Pi Squared, Inc. All rights reserved.

Contributors

● ZK team
○ Brandon Moore (the Block Model, overall design)
○ Mihai Calancea (original prototype)
○ B. Bailey, T. Șerbănuță, N. Watson, P. Raduletu (R&D)

● Math Proof Generation team
○ D. Lucanu (pinning the ASCII syntax for the Block language)

● Xiaohong Chen (making sure we stay on task and deliver)

FROM ’25| 2

© 2025 Pi Squared, Inc. All rights reserved.

Plan of the talk
1. Vision

○ Certified Execution: mathematical proofs of program execution
2. Research

○ Background: Proofs and (zk)SNARKs
○ Adapting proofs for SNARKs: the BLOCK model

3. Example
○ Propositional logic using the BLOCK model

4. Implementation
○ Compiling blocks into circuits

FROM ’25 | 3

© 2025 Pi Squared, Inc. All rights reserved.

Vision

FROM ’25 | 4

© 2025 Pi Squared, Inc. All rights reserved.

1. Program in any language

2. Settle any (zero knowledge) proof

3. Reach lightning fast (weak/generalized) consensus

FROM ’25 | 5

Pi Squared Web3 Vision

© 2025 Pi Squared, Inc. All rights reserved.

GeneratesDefined in

Breaking Programming Language
Barriers Using Formal Semantics

FROM ’25 | 6

Programming Languages Language Tools Separation of Concern
● Language design
● Tool implementation

Plug & Play your language

Correct by Construction

© 2025 Pi Squared, Inc. All rights reserved. FROM ’25 | 7

Pi2 = Proof of Proof
Mathematical

Proof
Zero Knowledge

Proof

© 2025 Pi Squared, Inc. All rights reserved.

Pi2 (Proof of Proof) Workflow

FROM ’25 | 8

Can we do better?

© 2025 Pi Squared, Inc. All rights reserved.

Research

Background: Proofs and (zk)Snarks

FROM ’25 | 9

© 2025 Pi Squared, Inc. All rights reserved.

SNARK for Mathematical Proofs
● Want efficient (zk)SNARK proof for validity of a mathematical proof
● A SNARK is a system for cryptographic “proofs” (aka “receipts”) of claims

○ About a relation R between “instances” and “witnesses”
○ Public input of a claim is the instance x. Claim is “I know a w with (x,w) in R”
○ Succinct: receipt small, efficiently checked
○ Noninteractive: receipt is a string checkable by anyone
○ ARgument: computational rather than absolute security
○ of Knowledge

● We call SNARK proofs “receipts” to distinguish from mathematical proofs

FROM ’25 | 10

© 2025 Pi Squared, Inc. All rights reserved.

Proof and Circuit codesign

Plan:
● review the structure of mathematical proofs
● review the features of zkSNARKs
● restrict the allowed form of mathematical proof rules

○ to be efficiently checkable with zk circuits.

FROM ’25 | 11

© 2025 Pi Squared, Inc. All rights reserved.

Review Proof Structure

FROM ‘25 | 12

⊢A→(B→A)
Ax1

⊢(A→((B→A)→A))→((A→(B→A))→(A→A))
Ax2

⊢A→((B→A)→A)
Ax1

MP
⊢(A→(B→A))→(A→A)

⊢(A→((B→A)→A))→((A→(B→A))→(A→A)) ⊢A→((B→A)→A)

⊢(A→(B→A))→(A→A) ⊢A→(B→A)
MP

⊢A→A

-
All hypotheses must equal a conclusion of a
predecessor
Valid proof is “proof of” any/all
conclusions

Q: What is a proof?

A: A DAG of instances of
proof rules.

Rules have hypotheses and
conclusions

- which are claims such
as ⊢𝜑

All hypotheses must equal a
 ↗
conclusion of a predecessor

© 2025 Pi Squared, Inc. All rights reserved.

Review Proof Rule Structure
● Rule are parameterized
● Lists of hypotheses and conclusions

written using the parameters
● We call each hypothesis or

conclusion a statement / claim
● Claims could be in different

relations, e.g.,
■ 𝜑 is well-formed
■ x is free in 𝜑
■ …

FROM ’25| 13

⊢(A→(B→C))→((A→B)→(A→C))
Ax2(A,B,C)

⊢A→(B→A)
Ax1(A,B)

MP(A,B)
⊢B

⊢A→B ⊢A

© 2025 Pi Squared, Inc. All rights reserved.

Review zkSNARK

● Primitive data elements of a finite field, usually 𝔽p (some schemes 𝔽2ⁿ)
● Native form of the instance and relation are vectors of field elements
● The relation is defined with arithmetic circuits or with polynomial constraints.

○ R1CS special case of degree 2 polynomials, also expresses circuits.
■ Constraints described by matrices A,B,C over the field.
■ Vector z formed from instance and witness (and a constant 1)
■ Check equation (Az)○(Bz) = (Cz), where ○ is element-wise product.

FROM ’25| 14

© 2025 Pi Squared, Inc. All rights reserved.

Review zkSNARK Randomization

● Access to “random” inputs through “Fiat-Shamir heuristic”
○ from public-coin interactive protocol to a non-interactive proof.

● With randomness we have permutation and lookup arguments
● Two lists of field elements a1,...,an and b1,...,bm
● Permutation argument enforces that lists are permutations
● Lookup argument enforces a subset relationship {ai:i∈1..n}⊆{bj:j∈1…m}
● List elements are field elements, or easy generalization to fixed-size tuples

FROM ’25| 15

© 2025 Pi Squared, Inc. All rights reserved.

Permutation from Polynomials

● Permutation and lookup argument use polynomials, permutation is simple
● ∏(ai-x) - ∏(bi-x) is a degree O(n+m) polynomial in x

○ Uniformly 0 if the lists are permutations
○ Otherwise at most O(n+m) roots, while usually |𝔽| is very large
○ Just evaluate at a random value ⍺ and require the result is zero

● Lookup uses similar ideas, more complicated expressions
● Both generalize to lists of fixed-size tuples of field elements

○ code tuple (a0,...,ak) as polynomial a0+a1x+...+akxk evaluated at random β
FROM ’25| 16

© 2025 Pi Squared, Inc. All rights reserved.

Research

Adapting proofs for SNARKs
The Blocks model

FROM ’25 | 17

© 2025 Pi Squared, Inc. All rights reserved.

Adapting Proofs for SNARKs
● Translate instances of a proof rule into small section of witness or circuit.
● Only interaction between different proof steps is checking hypotheses are

satisfied by other ruleʼs conclusions. Adapt to use lookup arguments

● Need to flatten claims to tuples of atomic values / field elements
○ Handling terms: Must translate syntax of formulas to additional claims

● Problem: Lookup does not enforce DAG structure.
○ Solution: add “depth” to claims and extra hypotheses to proof rules

FROM ’25| 18

© 2025 Pi Squared, Inc. All rights reserved.

Breaking Cycles
● Add an additional depth argument to claims: ⊢k𝜑 instead of ⊢𝜑

○ Can read ⊢k𝜑 as “𝜑 has a proof tree of depth at most k”

● Not all relations need a depth parameter
○ Proof rules might simply never depend on hypothesis of the same kind
○ Or rules emitting claims of that kind may only allow “structural recursion”

so ensuring certain other things are acyclic is sufficient
FROM ’25| 19

MP(A,B)
⊢B

⊢A→B ⊢A
MP(A,B,k,k1,k2)

⊢kB

⊢k1A→B ⊢k2A k1 < k, k2 < k

© 2025 Pi Squared, Inc. All rights reserved.

Flattening Syntax
Eliminate explicit syntax in terms by
● Introducing extra relations about relating terms to immediate subterms

○ e.g. is_impl(T,A,B) means T represents term A→B
● Give proof rules extra arguments naming all terms and subterms, extra

hypothesis using new relations. Now claim arguments are just variables
● (This is an independent transformation from adding depths, will do both)

FROM ’25| 20

MP(A,B)
⊢B

⊢A→B ⊢A ⊢T ⊢A is_impl(T,A,B)

⊢B
MP(T,A,B)

© 2025 Pi Squared, Inc. All rights reserved.

Flattening Syntax - Terms

● To use flattened rules, need syntax claims like is_impl(T,A,B)
● Flattened proof rules similar to use of Datalog for program analysis

○ there the syntax facts would be supplied as a preloaded table
● To fit the overall design, let rules emit these facts
● Attempt to define a rule

FROM ’25| 21

is_impl(T,A,B)
DefImpl(T,A,B)

© 2025 Pi Squared, Inc. All rights reserved.

Flattening Syntax - Terms

● Want to demand A,B to be terms; Need depths to prevent cyclic terms

● But also need to prevent conflicting definitions.
○ Canʼt allow both is_impl(T,A,A) and is_impl(T,C,D)

FROM ’25| 22

term(T,k) is_impl(T,A,B)
DefImpl(T,A,B,k,ka,kb)

term(A,ka) term(B,kb) ka<k kb<k

© 2025 Pi Squared, Inc. All rights reserved.

Unique Outputs

● The UNIQUE termdef(T) is the unique output constraint
○ Will enforce that no other step in the proof has same unique output

● Now if we try to have both is_impl(T,A,A) and is_impl(T,C,D) with two instances
of the DefImpl rule, the unique tags conflict

● Rules defining all other sorts of terms, such as conjunction will also have a
UNIQUE termdef(T) unique output, with the same relation <termdef>

FROM ’25| 23

UNIQUE termdef(T) term(T,k) is_impl(T,A,B)
DefImpl(T,A,B,k,ka,kb)

term(A,ka) term(B,kb) ka<k kb<k

© 2025 Pi Squared, Inc. All rights reserved.

Example

Propositional Logic in the BLOCK model

FROM ’25 | 24

© 2025 Pi Squared, Inc. All rights reserved.

Example: ASCII Blocks definition
 block def_term_bot(B):
 is_bot(B),
 UNIQUE wf_term(B), wf_term2(B, 0) -: .

 block def_term_mvar(T, V):
 is_mvar(T, V),
 UNIQUE wf_term(T), wf_term2(T, 0) -: .

 block def_term_impl(T, TA, TB, d, d_A, d_B):
 is_impl(T, TA, TB),
 UNIQUE wf_term(T), wf_term2(T, d)
 -: wf_term2(TA, d_A), wf_term2(TB, d_B),

inc_max(d, d_A, d_B).
FROM ’25| 25

 block axiom1(T; TA,TB,TI): // (TA -> (TB -> TA))
 proved2(T, 0) -: is_impl(TI,TB,TA), is_impl(T,TA,TI).

block axiom2(T; TA, TB, TC, THB, THC, TI, THI, TIH):
 proved2(T, 0) -:
 is_impl(THB,TA,TB), is_impl(THC,TA,TC), is_impl(TI,TB,TC),
 is_impl(THI,TA,TI), is_impl(TIH,THB,THC),
 is_impl(T,THI,TIH).

block modus_ponens(T; TA, TB, d, d_A, d_B):
 proved2(TB, d) -:
 is_impl(T, TA, TB), proved2(T, d_A), proved2(TA, d_B),

inc_max(d, d_A, d_B).

© 2025 Pi Squared, Inc. All rights reserved.

Example: A → A proof transcript
● Syntax construction of all used formulas.
● Last arguments of def_term_impl – depths

def_term_mvar(1, 0) // v0 or A

def_term_impl(2, 1, 1, 1, 0, 0) // A→A
def_term_impl(3, 1, 2, 2, 0, 1) // A→(A→A)
def_term_impl(4, 1, 7, 3, 0, 2) // A→((A→A)→A)
def_term_impl(5, 4, 6, 4, 3, 3) // (A→((A→A)→A))→((A→(A→A))→(A→A))
def_term_impl(6, 3, 2, 3, 2, 1) // (A→(A→A))→(A→A)
def_term_impl(7, 2, 1, 2, 1, 0) // (A→A)→A

FROM ’25| 26

Instantiated blocks

 block def_term_mvar(T, V):
 is_mvar(T, V),
 UNIQUE wf_term(T), wf_term2(T, 0) -: .

 block def_term_impl(T, TA, TB, d, d_A, d_B):
 is_impl(T, TA, TB),
 UNIQUE wf_term(T), wf_term2(T, d)
 -: wf_term2(TA, d_A), wf_term2(TB, d_B),

inc_max(d, d_A, d_B).

© 2025 Pi Squared, Inc. All rights reserved.

Example: A → A proof transcript
● Logical proof itself
● Last arguments of modus_ponens – depths

axiom1(3, 1, 1, 2) // A→(A→A)
axiom1(4, 1, 2, 7) // A→((A→A)→A)
axiom2(5, 1, 2, 1, 3, 2, 7, 4, 6) // (A→((A→A)→A))→((A→(A→A))→(A→A))

modus_ponens(5, 4, 6, 1, 0, 0) // (A→(A→A))→(A→A)
modus_ponens(6, 3, 2, 2, 1, 0) // A→A

FROM ’25| 27

● Instantiated block:
block axiom1(T; TA,TB,TI): // (TA -> (TB -> TA))
 proved2(T, 0) -:

is_impl(TI,TB,TA), is_impl(T,TA,TI).

● Terms:
1: A
2: A->A
3: A->(A->A)
4: A→((A→A)→A)
7: (A→A)→A

● Instantiated block:
block axiom2(T;TA,TB,TC,THB,THC,TI,THI,TIH):
 proved2(T, 0) -:
 is_impl(THB,TA,TB), is_impl(THC,TA,TC),
 is_impl(TI,TB,TC), is_impl(THI,TA,TI),
 is_impl(TIH,THB,THC), is_impl(T,THI,TIH).

● Terms:
1: A 2: A→A 3: A→(A→A) 4: A→((A→A)→A)
5: (A→((A→A)→A))→((A→(A→A))→(A→A))
6: (A→(A→A))→(A→A) 7: (A→A)→A

● Instantiated block:
block modus_ponens(T; TA, TB, d, d_A, d_B):
 proved2(TB, d) -:
 is_impl(T, TA, TB), proved2(T, d_A),
 proved2(TA, d_B), inc_max(d, d_A, d_B).

● Terms:
2: A→A 3: A→(A→A) 4: A→((A→A)→A)
5: (A→((A→A)→A))→((A→(A→A))→(A→A))
6: (A→(A→A))→(A→A)

© 2025 Pi Squared, Inc. All rights reserved.

Implementation

Compiling blocks into circuits

FROM ’25 | 28

© 2025 Pi Squared, Inc. All rights reserved.

Rules to Circuits

FROM ’25| 29

proved(T,k1) proved(A,k2) is_impl(T,A,B) k>k1 k>k2

proved(B,k)

MP

T
A
B
k
k1
k2

(<proved> ,T,k1)
(<proved> ,A,k2)
(<is_impl> ,T,A,B)

(<proved> ,B,k)

Lookup

Lookup

α,β,...

hyp/conc
accumulator

multiplicity

⊖

MP(T,A,B,k,k1,k2)

© 2025 Pi Squared, Inc. All rights reserved.

Uniqueness in circuits

● Unique outputs handled with a permutation argument
● Rule circuits output tuples as one side of a permutation argument
● Overall circuit has second witness input which is constrained to be a

permutation of those outputs, and locally constrained to be sorted
● Then it is easy to check there are no duplicates

○ (except a specially allowed dummy element, if needed)

FROM ’25| 30

© 2025 Pi Squared, Inc. All rights reserved.

Segment Circuit

Many blocks can also
be aggregated with
similar small output

FROM ’25| 31

Blocks

α,β,...

hyp/conc
accumulator

uniq
accumulator

block
inputs

unique
witness Perm

Sorted, No
duplicates

⊖

© 2025 Pi Squared, Inc. All rights reserved.

Folding (Nova style)

● Recursively aggregate multiple R1CS instances while preserving the structure
● Standard R1CS: (Az)○(Bz) = (Cz), where z = (1, x, w)
● Relaxed R1CS: (Az)○(Bz) = u(Cz) + E

○ u scalar; E - error vector to absorb extra cross-terms when doing folding
● Given (A,B,C),(E1 ,u1 ,x1) with witness W1 , and (A,B,C),(E2,u2 ,x2) with witness W2

○ With new random scalar r, and with zi=(1, xi, wi), compute:
■ u=u1 + r u2, E=E1+r((Az1)○(Bz2)+(Az2)○(Bz1) - u1(Cz2)-u2(Cz1)) + r2E2

○ Then z=(1,x1+r x2,w1+r w2) satisfies (Az)○(Bz) = u(Cz) + E
FROM ’25| 32

© 2025 Pi Squared, Inc. All rights reserved.

Optimization problem
● Each segment must have the exact same number of blocks of given type

○ Let ri (to be determined) be the ratio of blocks of type i

○ It must be that ∑i ri= 1
● Public segments are separated from private segments

○ Let pi (qi) be the ratio of public (private) segments in a proof transcript

○ We have ∑i(pi + qi) = 1
● We want to minimize the total number of segments, i.e., minimize

○ maxi (pi / ri) + maxi (qi / ri)

FROM ’25| 33

© 2025 Pi Squared, Inc. All rights reserved.

Conclusions

● We have defined and implemented a logic language for generating zkSNARKs
● Suitable for most logical inference-like problems

○ like math proofs, but not limited to that
● It is definitely a better solution than running proof verifiers on top of zkVMs

○ Its performance is close to handcrafted circuits for particular problems

FROM ’25| 34

© 2025 Pi Squared, Inc. All rights reserved.

Thank you!

Questions?

FROM '25 | 35

© 2025 Pi Squared, Inc. All rights reserved. FROM ’25| 36

References

● Pi Squared Inc. Whitepaper
● Justin Thaler, Proofs, Arguments, and Zero-Knowledge
● Ulrich Haböck, Multivariate lookups based on logarithmic derivatives
● Abhiram Kothapalli, Srinath Setty, Ioanna Tzialla, Nova: Recursive

Zero-Knowledge Arguments from Folding Schemes

https://pi2.network/papers/proof-of-proof-whitepaper
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370

© 2025 Pi Squared, Inc. All rights reserved.

Case study

zkUNSAT using the block model

FROM ’25 | 37

https://eprint.iacr.org/2022/206

© 2025 Pi Squared, Inc. All rights reserved. FROM ’25| 38

Refutation through resolution

● Clauses: 1: x1 ∨ x2; 2: ¬x1 ∨ x2; 3: x1 ∨ ¬x2; 4: ¬x1 ∨ ¬x2
○ Encoding 1: 1 2; 2: -1 2; 3: 1 -2; 4: -1 -2

Refutation:
● resolution between 1 and 3 using x2 resulting in 5: x1
● resolution between 4 and 2 using ¬x2 resulting in 6: ¬x1
● resolution between 5 and 6 using x1 resulting in 7: ⊥

© 2025 Pi Squared, Inc. All rights reserved. FROM ’25| 39

Literals
 block def_lit(X,NX):
 lit_negation(X,NX),
 lit_negation(NX,X),
 UNIQUE is_lit(X),
 UNIQUE is_lit(NX)
 -:
 .

© 2025 Pi Squared, Inc. All rights reserved.

Clauses as lists of literals
block declare_clause(L;K):
 clause(L)
 -:
 ne_list(L,K)
 .

block def_list_empty(L):
 is_empty(L), UNIQUE list(L)
 -:
 .

FROM ’25| 40

block def_list_singleton(L,X):
 is_singleton(L,X), ne_list(L,1), UNIQUE list(L)
 -:
 .

block def_list_app(L,L1,L2;K,K1,K2):
 is_ne_app(L,L1,L2), ne_list(L,K), UNIQUE list(L)
 -:
 ne_list(L1,K1), ne_list(L2,K2), add(K,K1,K2)
 .

© 2025 Pi Squared, Inc. All rights reserved.

Resolution
 block goal(L):
 -:
 is_empty(L),
 clause(L)
 .

FROM ’25| 41

block resolve(L,L1,X,L1a,L2,NX,L2a):
 clause(L)
 -:
 clause(L1),
 clause(L2),
 lit_negation(X,NX),
 remove_lit(L1a,L1,X),
 remove_lit(L2a,L2,NX),
 is_app(L,L1a,L2a)
 .

© 2025 Pi Squared, Inc. All rights reserved.

Removing a literal

FROM ’25| 42

block remove_singleton_eq(La, L,X):
 remove_lit(La, L,X)
 -:
 is_singleton(L,X),
 is_empty(La)
 .

block remove_keep(L, X):
 remove_lit(L, L, X)
 -:
 .

block remove_app(La, L,X,L1,L2,L1a,L2a):
 remove_lit(La,L,X)
 -:
 is_ne_app(L,L1,L2),
 remove_lit(L1a, L1,X),
 remove_lit(L2a, L2,X),
 is_app(La,L1a,L2a)
 .

© 2025 Pi Squared, Inc. All rights reserved.

List append as a predicate

FROM ’25| 43

block is_app_empty(L0):
 is_app(L0,L0,L0)
 -:
 is_empty(L0)
 .

block is_app_nonempty(L,L1,L2):
 is_app(L,L1,L2)
 -:
 is_ne_app(L,L1,L2)
 .

 block is_app_empty_left(L,L0,K):
 is_app(L,L0,L)
 -:
 is_empty(L0),
 ne_list(L,K)
 .
 block is_app_empty_right(L,L0,K):
 is_app(L,L,L0)
 -:
 is_empty(L0),
 ne_list(L,K)
 .

© 2025 Pi Squared, Inc. All rights reserved.

Example transcript
def_lit(1,2)
def_lit(3,4)
def_list_empty(1)
def_list_singleton(2,1)
def_list_singleton(3,3)
def_list_app(4, 2, 3, 2, 1, 1)
declare_clause(4,2)
def_list_singleton(5, 2)
def_list_app(6, 5, 3, 2, 1, 1)
declare_clause(6,2)
def_list_singleton(7, 4)
def_list_app(8, 2, 7, 2, 1, 1)
declare_clause(8,2)

FROM ’25| 44

def_list_app(9, 5, 7, 2, 1, 1)
declare_clause(9,2)

remove_singleton_eq(1, 3, 3)
remove_keep(2, 3)
is_app_empty_right(2, 1, 1)
remove_app(2, 4, 3, 2, 3, 2, 1)
remove_singleton_eq(1, 7, 4)
remove_keep(2, 4)
remove_app(2, 8, 4, 2, 7, 2, 1)
def_list_app(10, 2, 2, 2, 1, 1)
is_app_nonempty(10, 2, 2)
resolve(10, 4, 3, 2, 8, 4, 2)

remove_singleton_eq(1, 3, 3)
remove_keep(5, 3)
is_app_empty_right(5, 1, 1)
remove_app(5, 6, 3, 5, 3, 5, 1)
remove_singleton_eq(1, 7, 4)
remove_keep(5, 4)
remove_app(5, 9, 4, 5, 7, 5, 1)
def_list_app(11, 5, 5, 2, 1, 1)
is_app_nonempty(11, 5, 5)
resolve(11, 6, 3, 5, 9, 4, 5)

remove_singleton_eq(1, 2, 1)
remove_app(1, 10, 1, 2, 2, 1, 1)
remove_singleton_eq(1, 5, 2)
remove_app(1, 11, 2, 5, 5, 1, 1)
resolve(1, 10, 1, 1, 11, 2, 1)

© 2025 Pi Squared, Inc. All rights reserved.

● Our solution is ~ 1.2 - 4.3 slower than zkUNSAT. However,
● Our solution is generic, generated from a particular block model for refutation

○ same solution could be applied to many other problems
● zkUNSAT uses an interactive algorithm

○ there are known to be faster than non-interactive ones
○ but are not suitable for generating zk receipt

Comparison with zkUNSAT

FROM ’25| 45

