Advances in Programming Languages and in Program Verification

Stefan Ciobacd

Habilitation Thesis

Stefan Ciobacs

Alexandru loan Cuza University, lasi, Romania

September 19th, 2025

Programming Languages and Program Verification

Outline

@ PhD Studies

e Matching Logic

© Proofs of Relational Properties
© The IZA Project

© LCTRSs

© Program Verification

@ Perspectives

Stefan Ciobacd Programming Languages and Program Verification

PhD Studies
Laboratoire Spécification et Vérification, ENS Cachan 2008-2011

< \ \ Augerviners T,
N 57Q) palomana iy P il N
Coutbeyole.. e =
& S Levalols Perrgt?”
svallis Pere 161 ARR
A wonTuaRTRe
A7t arm %
4 auamen TOTHARR.
/ \\\
de
/' Arc de Triomphe selovle © L
A @ Musée dOrsay L; Montreuil
A | ;
Tour Eiffel © Place delaBastille «{/W
ol 1

- @fe vl Garos

s
& AsTHARR
MoNTPARNASSE

T4TH AR, pLacE DiTALIE

\ 13TH ARR.
1 5sy-les-Moulineaux.

Meudon
~Z
/ Chatiffon
/ Clamart
/
,"”'/0

D

PhD Thesis: Verification and Composition of Security Protocols with Applications to
Electronic Voting

Advisors: Véronique Cortier, Steve Kremer, and Jean Goubault-Larrecq.

Maps source: Google Maps

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 3/57

Verification of Security Protocols
Protocol P E Property ¢
e.g., TLS, Kerberos, OAuth e.g., does not leak a key k

e Protocol (symbolic model):

out(A, s(b(c(u, ra), ba), ka)).

A(u) in(A, xa). out(c, u(xa, ba)). out(c, ra)
check(xa, pk(k))H: b(c(u, ra), ba) | |
out(B, s(b(c(v, rs), bg), ks)).

B(v) in(B, xg). out(c, u(xa, ba)). out(c, rg)
check(xg, pk(k)) = b(c(v, rg), bs)

e Primitives (equational theory):
o(c(x;), y) = x
check(s(x, y), pk(y)) = x

e Property (behavioral equivalence):
A(u) [B(v) = A(v) [B(u)

September 19th, 2025 4/57

Stefan Ciobacd Programming Languages and Program Verification

Verification of Security Protocols

e CADE 2009: Stefan Ciobaca, Stéphanie Delaune, and Steve Kremer. Computing
knowledge in security protocols under convergent equational theories (extended version in
JAR 2012)

X =X1,X2, -y Xn

?
Output: X =Y
Y:y17y27-~-,}/n P

Input:

e ESOP 2012: Rohit Chadha, Stefan Ciobacs, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols

Input: A, B(processes) Output: A B

e CSF 2010: Stefan Ciobaca and Véronique Cortier. Protocol composition for arbitrary
primitives.

o =Plore

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 5/57

Verification of Security Protocols

ESOP 2012: Rohit Chadha, Stefan Ciobaca, and Steve Kremer. Automated verification
of equivalence properties of cryptographic protocols
e Key idea 1 (encoding protocols as Horn clauses): in(x).out(enc(x, k))

w1 Din(x).out enc(x, k) | X >e X.
e Key idea 2 (encoding rewriting theory as Horn clauses): variants of terms: o(x, z) has a
variant of z for the case where x = ¢(z, y)

oX,Y)>z|X>cz,y),YD>y

UNIF 2011 Stefan Ciobaca.
Computing finite variants for subterm convergent rewrite systems

e Key idea 3 (solving using theorem proving): tailored prover based on a refinement of
first-order resolution

https://github.com/ciobaca/akiss

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 6/57

https://github.com/ciobaca/akiss

Verification of Security Protocols (Post PhD)

Rohit Chadha, Vincent Cheval, Stefan Ciobacs, and Steve Kremer. Automated ver-
ification of equivalence properties of cryptographic protocols. ACM Trans. Comput.
Log., 17(4):23, 2016 (extended version of ESOP 2012)

Zist Annual AN
i

BEST OF

: COMPUTING §
Notable Article

ThinkLoud 4%

owesFEZ

e 2014: Cholewa, Meseguer, and Escobar. Variants of Variants and the Finite Variant
Property

“CiobAac3 Variants (Ciob-Variants)”

e Software

https://github.com/ciobaca/kiss
https://profs.info.uaic.ro/stefan.ciobaca/subvariant/
https://github.com/ciobaca/akiss

March 2025: King's College in London: possibility of using (A-)KiSS for “Dolev Yao as a
service (or as a plug-in)".

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 7/57

https://github.com/ciobaca/kiss
https://profs.info.uaic.ro/stefan.ciobaca/subvariant/
https://github.com/ciobaca/akiss

Outline

© Matching Logic

Languages and Program Verificati

Matching Logic

2011: DAK Project
kframework.org

Programming Languages and Program Verification

kframework.org

K Framework: Programming Language Semantics

syntax AExp ::= Id | Int
| "(" AExp ")" [bracket]
| AExp "+" AExp [left, strict]
syntax Stmt ::= "{" "}"
| "{" Stmt "}"
| Id "=" AExp ";" [strict(2)]
| "if" BExp
"then" Stmt
"else" Stmt [strict(1)]
| "while" BExp "do" Stmt
> Stmt Stmt [left]

configuration <T color="yellow">
<k color="green"> $PGM:Pgm </k>
<state color="red"> .Map </state>

</T>
rule <k> X = I:Int; =></k>
<state>... X |-> (_ => I) ...</state>

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 10/57

K Framework: ldea

Operational Semantics

Intepretor Compiler Debugger Verifier

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 11/57

Matching Logic

e Logic to reason about programs initially developed by Rosu and Schulte.

Matching Logic Formulae: XA x> 3;
Satisfaction Relation: v, 0 E ¢
Example: 4 {x— 4} ExNAx>3.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 12 /57

Reachability Logic

A reachability logic formula:

P =¥
e operational semantics rule:
<k> X = I:Int; =></k>
<state>... X |-> (_ => I) ...</state>

e program specification:

<k> SUM </k> <state> n |-> n </state>
=>
<k> . </k> <state>n |-> ns |-> n(n+1)+2

Stefan Ciobacd Programming Languages and Program Verification

</state>

September 19th, 2025

13 /57

Reachability Logic

Feutomet ¢ = ¢

A
CIRCULARITY
Abcp= ¢

Fco=T¢ AUCHKH ¢ = ¢"
AFco= o

A
TRANSITIVITY

Grigore Rosu and Andrei Stefanescu. Checking reachability using matching logic.
In Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, pages 555-574. ACM, 2012

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 14 /57

Reachability Logic

Typical induction proof does not work:

Arcp=¢ - AEcp=¢

AFcp=¢ —
VWO.
Sk AAS S C—
vy, p.
V2 yAveEe—
FH.(v=2AYpE),

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 15 /57

Reachability Logic (One-Path)

Theorem soundness :
WeaklyWDSystem S —->
forall A C phi phi’,
PS A C phi phi’ ->
forall g,
Terminates S g —>
GStronglyValidssys true A g —->
GAlmostStronglyValidssys true C g —>
((IsEmpty C ->
GStronglyValid false (phi, phi’) g) /\
((not (IsEmpty C)) ->
GStronglyValid true (phi, phi’) g)).

Grigore Rosu, Andrei Stefdnescu, Stefan Ciobaca, and Brandon M. Moore. One-
path reachability logic. In 28th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 358—
367. IEEE Computer Society, 2013

Stefan Ciobacd

Programming Languages and Program Verification September 19th, 2025 16 /57

Reachability Logic (All-Path)

Ee— \/ 3FFreeVars(p).por = 3c(ele/OlAilc/O) Apr — ¢

Ap/:>350r65

STEP

S, Atcp=" o

Andrei Stefinescu, Stefan Ciobacd, Radu Mereutd, Brandon M. Moore, Traian-
Florin Serbanuta, and Grigore Rosu. All-path reachability logic. In Gilles Dowek,
editor, Rewriting and Typed Lambda Calculi - Joint International Conference, RTA-
TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes in Computer
Science, pages 425-440. Springer, 2014 (extended version in LMCS 2019)

J

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

17 /57

Transforming Semantics

Small-step style:

e —> e & — e

elte—ete vite — vite Vit ve — vi e v

Big-step style:
elwv elw
e +elvitimve

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 18 /57

Transforming Semantics
e Transform

M; — Ny M, — N,

M— N ¢

into
My | Ny M, | N, Ny V

MV ?,
e and add

V] V. Vi
Conditions:

e ground confluence for the small-step relation;

e values (defined by |) are normal forms w.r.t —;
e star-soundness;

e star-completeness.

Stefan Ciobaca. From small-step semantics to big-step semantics, automatically. In
Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal Methods, 10th
International Conference, IFM 2013, Turku, Finland, June 10-14, 2013. Proceed-
ings, volume 7940 of Lecture Notes in Computer Science, pages 347-361. Springer,

2013

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

19/57

Impact

e Reachability Logic:
Runtime Verification, Inc.: https://runtimeverification.com

e iFM 2013
talk at SSLF 2012 (citations in ESOP 2014, ..., ICFP 2025)

2014: Seminar Programmiersprachen (Freie Universitat Berlin, Prof. Dr. E.
Fehr, Lilit Hakobyan)

TYPES 2017 Stefan Ciobaca and Vlad Andrei Tudose. Automatically
constructing a type system from the small-step semantics

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 20/57

https://runtimeverification.com

Outline

© Proofs of Relational Properties

Programming Languages and Program Veri

Proofs of Relational Properties

Operational Semantics

Relational Verifier

Relational properties = Properties of more than one program

Program equivalence = For the same input, the two programs produce the same output

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 22/57

Reducing Equivalence To Correctness

Start with two programming languages:
L4 CfgL7SL7ZL7713AL;
o Cfg‘R75szRv77?7AR-

Construct the product language: Cfg, S, %, T, A.

Lemma (Lemma 1 in the SYNASC 2014 paper)
We have that
(ve,7R) =4 (Y1, 7R)
if either
VoA
or
YR —>Ag VR

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 23 /57

Reducing Equivalence To Correctness

Theorem (Theorem 4 in the SYNASC 2014 paper)
Two programs P, and Pgr are partially equivalent iff

A = (input, (i), inputg(i)) = (Cr, Cr) A output, (Cp) = outputg(CR).

Stefan Ciobac3. Reducing partial equivalence to partial correctness. In Franz Win-
kler, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt,
and Daniela Zaharie, editors, 16th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania,
September 22-25, 2014, pages 164-171. IEEE Computer Society, 2014

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

24 /57

Programming Languages Aggregation

Stefan Ciobac3, Dorel Lucanu, Vlad Rusu, and
Grigore Rosu. A theoretical foundation for pro-
In hr gramming languages aggregation. In Mihai Code-

scu, Razvan Diaconescu, and lonut Tutu, editors,

Recent Trends in Algebraic Development Tech-
niques - 22nd International Workshop, WADT
? > 2014, Sinaia, Romania, September 4-7, 2014, Re-

RN T, vised Selected Papers, volume 9463 of Lecture
hi hi Notes in Computer Science, pages 30-47. Springer,
2014

As ={uy(1) = (1) | o1 = ¢h € ALJU
{£(p2) = L(05) | o2 = ¢h € Ar}

Ao ={15 (1) A tf(2) = IxTy. (1 (1) A LE (92)) |
1= 1 € AL g2 = @5 € Ar}

A=A, UA,

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 25 /57

Full Equivalence

cC := n;

n := 1;

while (c != 1)
n :=n + 1;

if (¢ h 2 ' = 0)
then c¢c := 3 *
else ¢ := c /

pf.An.da.
if n =1
then
if n % 2

then f (3 * n + 1) (a + 1)

0

else £ (n / 2) (a + 1)

else
a

Stefan Ciobacd Programming Languages and Program Verification

September 19th, 2025

26 /57

Full Equivalence

pekE EFoi="or Eep=>"0 oo VT E
AXIOM = STEP ~
Fold™ E F{p1,02) 7 E
— 3% P UTE U E Y UITE
CONSEQ = CASE ANALYSIS s
Feld™ E Fove T E

Eoer=" ¢ Eea="or F (o e0) I EU{(p1,02)}
F{p1,92) | E

CIRCULARITY

Stefan Ciobaca, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A language-
independent proof system for mutual program equivalence. In Stephan Merz and
Jun Pang, editors, Formal Methods and Software Engineering - 16th International
Conference on Formal Engineering Methods, ICFEM 2014, Luxembourg, Luxem-
bourg, November 3-5, 2014. Proceedings, volume 8829 of Lecture Notes in Com-
puter Science, pages 75—90. Springer, 2014

Stefan Ciobaca, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A language-
independent proof system for full program equivalence. Formal Aspects Comput.,
28(3):469-497, 2016

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

27 /57

Trace-Relating Compiler Correctness and Secure Compilation

e compiler correctness = any trace of the target program is also a trace of the source
program

e CompCert: additional undefined behavior event in the source

e CakeML: additional resource exhaustion event in the target

YW. Vt. W]t =3s ~ t. Wass
Il

ccr
Ve YW. W = &(7r) / \ Vrs. YW. W = s
= W] Enr = Tpl————= TP = = WlE7(m)

e secure compilation = if source program has a security property, then target program
also has the same property

the trinitarian view for compiler correctness extends to a number of definitions for
secure compilation

Carmine Abate, Roberto Blanco, Stefan Ciobacd, Adrien Durier, Deepak Garg,
Catalin Hritcu, Marco Patrignani, Eric Tanter, and Jérémy Thibault. An extended
account of trace-relating compiler correctness and secure compilation. ACM Trans.
Program. Lang. Syst., 43(4):14:1-14:48, 2021 (extended version of ESOP 2020

paper)

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 28 /57

Secure 10 (SCIO¥)

source language - target |
1
. ! H . . e

verified ' compile compiled link unverified

T - 7
program i add higher- program add reference context
1 order contracts monitor
strong I intermediate weak
interface interface interface

Cezar-Constaptin Andrici, Stefan Ciobacd, Citilin Hritcu, Guido Martinez, Exe-
quiel Rivas, Eric Tanter, and Théo Winterhalter. Securing verified 10 programs
against unverified code in F*. Proc. ACM Program. Lang., 8(POPL):2226-2259,
2024

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 29 /57

Impact

e language aggregation construction shows the power of language-parametric tools;
e Dagstuhl Seminar 18151 on Program Equivalence;

e PERR (Program Equivalence and Relational Reasoning);

e starting point for collaboration with Andrei-Sebastian Buruiang;

e Cezar-Constantin Andrici pursued a PhD thesis with C3atalin Hritcu.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

30/57

Outline

© The IZA Project

Languages and Program Verificati

The IZA Project

e Bridge Grant between between the Alexandru loan Cuza University and Bitdefender.
e Goal: transfer the expertise of the FMSE (Formal Methods in Software Engineering)
group in verification and static analysis to Bitdefender.

Which static analyzer should we use?

e An example of a test case in the Toyota ITC [23] test suite:

void bit_shift_001 () void bit_shift_001 ()
{ {
int a = 1; int a = 1;
int ret; int ret;
ret = a << 32; ret = a << 10;
/*ERROR : /*NO ERROR:
Bit shift errorx*/ Bit shift errorx*/
sink = ret; sink = ret;
¥ }

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 32/57

The IZA Project

Tool D1|D
System 0
Clang 15
Cppcheck
Flawfinder
Flint++
Frama-C
Infer
Oclint
Sparse
Splint
Uno

D9

13

HFHRF OO, OOOOOWOl o
OFHOOWHOOKNOIN

OCOO0OO0OOOOHHOF O

OWOOOWO OO WOolu

OO0 OOOO OO H-OPN

ONOOOOOOOWVWU|W

N
OO O0OOOWO OO ON

[eNeoNoNoNoNoNoNeNoe]
NOOOOOOOO

e D1 = Concurrency defects, D2 = Dynamic memory defects, D3 = Inappropriate code,
D4 = Misc defects, D5 = Numerical defects, D6 = Pointer related defects, D7 =
Resource management defects, D8 = Stack related defects, D9 = Static memory defects

7

Andrei Arusoaie, Stefan Ciobacs, Vlad Craciun, Dragos Gavrilut, and Dorel Lu-
canu. A comparison of open-source static analysis tools for vulnerability detection
in C/C++ code. In Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie,
Tetsuo Ida, and Stephen M. Watt, editors, 19th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, SYNASC 2017, Timisoara,
Romania, September 21-24, 2017, pages 161-168. IEEE Computer Society, 2017

\

v

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

33/57

Impact

o Citations?:

e March 2025:

18
- I 0

2017 2018 2019 2020 2021 2022 2023 2024 2025

Contact from Lund University

2Source: Google Scholar
Stefan Ciob

Languages and Program Verifi

Outline

@ LCTRSs

Languages and Program Verificati

Logically Constrained Term Rewriting Systems

K framework: most results do not make use of matching logic in its full generality.

Is there a simpler, but still useful, formalism?

A logically constrained term rewriting rule [18] is of the form
| — rif ¢,

where [and r are terms and ¢ is a (typically first-order) constraint.

LCTRSs can be used to define operational semantics.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

36 /57

Reducing Total Correctness to Partial Correctness

Vi =
., (5P) v (e(5),e(P))
total correctness partial correctness

Main idea: for every rule ¢ = ¢’ add a rank: ©(p, n) = ©(p,n —1).

Theorem (Theorem 3.1 (Page 9) in our WPTE paper)
If there exists some term s € Terms na:(Var) of sort Nat such that
O(S) E O(p,5) =" IM.O(¢', M),

where M € Varpat, then
S ':t © :>\1 QO/.

Andrei-Sebastian Buruiana and Stefan Ciobac3. Reducing total correctness to par-
tial correctness by a transformation of the language semantics. In Joachim Niehren
and David Sabel, editors, Proceedings Fifth International Workshop on Rewriting
Techniques for Program Transformations and Evaluation, WPTE@FSCD 2018, Ox-
ford, England, 8th July 2018, volume 289 of EPTCS, pages 1-16, 2018

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 37/57

A coinductive approach to reachability in LCTRSs

(t1¢)=(t'|¢)

[xem] = T Ty =T T)

(t | ¢ A-GFrti=tNd))=t | &)
(t | o)y=(t | ¢r)
X £ var(t,,) \ var(t, ¢1)
k.t = t. A\ ¢, satisfiable
(tj | ¢>j>:><tr | &), j€{l,...,n}
(t] o)y=(t | ¢r)
(t | ¢1) is R—derivable and
o — \/J.E{1 ’’’’’) 3y .¢/ is valid
I AR((t | 61) = (£ |) (" | 67} and
y = var(t/, @)\ var(ti, ¢1)

[subs]

where

[der”]

The proof system is sound and complete.

Theorem J

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 38 /57

A coinductive approach to reachability in LCTRSs

(tr | dINGNGL) = ¢,
(t | drA=0) = o ¢ is var(tf, o).t = tf A ¢F,
(tr | &)= (tr | o7)=(tr | ¢7)€G

[circ]

Theorem

If all of the reachability formulae in the set G are provable using guarded proof trees (i.e.,

trees where CIRC is used only after DER”), then all reachability formulae in G are also
valid.

Stefan Ciobac3 and Dorel Lucanu. A coinductive approach to proving reachabil-
ity properties in logically constrained term rewriting systems. In Didier Galmiche,
Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th In-
ternational Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 295-311. Springer, 2018

J

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 39/57

Unification Modulo Builtins
n—2xN+1cnt— C = ent—= C' + N n— N +3

1. function UNIFICATION(t1, t)

2 > returns: a complete set of E-unifiers modulo builtins of t; and t»
3 compute (s | ¢7'), an abstraction of t;

4 compute (s, | ¢°2), an abstraction of t»

5: compute {71,...,7,}, a complete set of E-unifiers of s; and s,

6 forie{1,...,n} do

7 ’r,-/ — Ti|X\Xb

8 @F <+ 7L A P72 A Nxcdom(rynas Ti(X) = x

0: return {(71,91),...,(7h, ¢n)}

Stefan Ciobacs, Andrei Arusoaie, and Dorel Lucanu. Unification modulo builtins.
In Lawrence S. Moss, Ruy J. G. B. de Queiroz, and Maricarmen Martinez, editors,
Logic, Language, Information, and Computation - 25th International Workshop,
WoLLIC 2018, Bogota, Colombia, July 24-27, 2018, Proceedings, volume 10944
of Lecture Notes in Computer Science, pages 179-195. Springer, 2018

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 40 /57

Revisiting AC-unification
f(x,fly,2)) = f(f(x,y),z) f(x,y)="f(y,x)
Topmost AC-unification: f*(u1,...,u) = f (vi,...,)

LDE: aix1 + ...+ anxn = bix1 + ...+ baxn

e benchmark four algorithms for solving LDEs (a lexicographic enumeration algorithm, a
completion procedure, a graph-based algorithm, and the Slopes algorithm);
e implement AC-unfication as a library.

Valeriu Motroi and Stefan Ciobaca. A note on the performance of algorithms for
solving linear Diophantine equations in the naturals. CoRR, abs/2104.05200, 2021

Valeriu Motroi and Stefan Ciobac3. A typo in the Paterson-Wegman-de Cham-
peaux algorithm. CoRR, abs/2007.00304, 2020

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 41 /57

Operationally-based program equivalence proofs using LCTRSs

Motivating example:
o f=2MAn. if n=0 then 0 else n+ f(n—1);
o F=Anilda. if i < n then F(n,i+1,a+ i) else a.

£(3) =

£(2), 3+0 = F(3, 0, 0) =

f(1), 2+0, 3+0 = F(3, 1, 0 + 0) =

£(0), 1+, 2+, 3+0 = F(3, 2, 0+0+ 1) =

0, 1+, 2+, 3+0 = F3, 3, 0+ 0+ 1+ 2) =

1, 2+0, 3+0 = F(3, 4, 0+ 0+ 1+ 2+ 3) =
3, 3+ = 6

6

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

42 /57

Operationally-based program equivalence proofs using LCTRSs

AXxI0M

G,BFEPZQifl
G,BFe PZQifdp A s
G,BFeE P3Qifo
if = o5 — Vi o = sub((P, Q), B)
Q' ife'enZN(Q)
G,BF P<Qifp A —p¢
G,BF' P<Qif¢
ifeoe— V& > sub((P.Q),6)
@ if ¢! eAR(Q)
G,BFE P=Q if¢ A —d¢
CIrcS -
G,BFE P=Qif¢
if = e — V ¢' = sub((P,Q),6G)
Q" ifg’enzl e =(Q)
G,BF P 2Q if¢' (forall 1< i< n)
G,BFeEPZQif¢ A—¢ " A...A=g"
G,BFE PZQif¢
if Ag, (P if ¢)={P" if /|1 < i< n}

BASE

CIrc™

STEP

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

43 /57

Operationally-based program equivalence proofs using LCTRSs

e Motivating example: f < F,f <X F, F <X f, but cannot show F < f
e Bounded stack: (x:=e;es, env, fs) — (e; x := [J; es, env, fs) if —val(e) A len(es) < k
| S —

constrain stack size
f no longer equivalent to F

e Optimization proofs using programs schemas:

— Loop unswitching v 8.19s 4.71s
Optimization PEC CORK RMT L
— Software pipelining | v 8.02s 3.56s
Code hoisting v 0.32s 0.41s -
) Loop fission Vp | 23455 | o 10.40s
Constant propagation v 0.33s 0.31s .
¢ N v 0.33 0.26 Loop fusion Vp | 2334s | o 9.67s
Oopy propfagatlon 398 -2bs Loop interchange Vp | 29.30s | O 108.63s
If-conversion v 0.34s 0.48s
Partial redund y 0.34 0.75 Loop reversal Vo 8.41s 2.70s
le‘;rt]a redundancy 248 198 Loop skewing Vp 8.50s 7.68s
ilmln‘atlon‘ v 3.48 3,70 Loop flattening X x | O 8.14s
oop 'nva_”ant o8 95 Loop strength X 5.63s 5.26s
code motion reduction
tOOP peellﬂg j 1;'?35 23;5 Loop tiling 01 % 10.94s 25.41s
00p unrofiing s P75 | Loop tiling 02 : O 21.58s

Stefan Ciobacs, Dorel Lucanu, and Andrei-Sebastian Buruian3. Operationally-
based program equivalence proofs using LCTRSs. J. Log. Algebraic Methods Pro-
gram., 135:100894, 2023

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 44 /57

Impact

e ISR 2019: invited speaker (RMT tool);
e co-chair WPTE 2022, WPTE 2023, SC member since 2024;

e Unification modulo builtins: José Meseguer: “The recent work of S. Ciobaca, A.
Arusoaie, and D. Lucanu [22] saves the day.”;

e Unification work: Dennis de Champeaux, after a 20-year retirement (Journal of
Automated Reasoning 2022);

e AC Unification Library: potential integration into the Tamarin prover.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

45 /57

Outline

© Program Verification

Languages and Program Verifi

Program Verification (using Dafny)
Dafny is a verification-enabled programming language.

method binarySearch(a: array<int>, key : int) returns (r : int)
requires ¥ j, k « @ < j < k < a.Length = a[j] < a[k]
ensures r > @ = @ < r < a.Length A a[r] == key
ensures r <@ = Y k « @ < k < a.Length - 1 = a[k] = key

<
<

{
var left : int = 0;
var right : int = a.lLength - 1;
while (left < right)
invariant @ < left < a.Length
invariant -1 < right < a.Length
invariant ¥ k « @ < k < left = a[k] < key
invariant ¥ k « right < k < a.Length = a[k] > key
decreases right - left
{
var mid : int = (left + right) / 2;
if (key < a[mid]) {
right = mid - 1;
} else if (key > a[mid]) {
left = mid + 1;
} else {
return mid;
}
}

return -1;

Stefan Ciobacd Programming Languages and Program Verification

Formalizing the CDCL Algorithm

Input: formula (x1 Vx2 V =x3) A (=x1 V —xa) A ...
Output: is the formula satisfiable?

2018: Proposed to Cezar-Constantin Andrici as a BSc thesis project to implement,
specify and verify CDCL in Dafny.

@ Unit propagation (or Boolean constraint propagation)
@ Fast data structures.

© Variable ordering heuristics.

© Backjumping

@ Conflict analysis

@ Clause learning and clause forgetting

@ Restart strategy

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

48 /57

Formalizing the €BCLEDPLL Algorithm

2019: We implemented, specified and verified a simplified version of DPLL in Dafny.
© Unit propagation (or Boolean constraint propagation)
@ Fast data structures.
© Variable ordering heuristics.
O Backi .
0 Conf .
oc . : .
O Restart-strategy

Cezar-Constantin Andrici and Stefan Ciobaca. Verifying the DPLL algorithm in
dafny. In Mircea Marin and Adrian Craciun, editors, Proceedings Third Symposium
on Working Formal Methods, FROM 2019, Timisoara, Romania, 3-5 September
2019, volume 303 of EPTCS, pages 3-15, 2019

Cezar-Constantin Andrici and Stefan Ciobaca. A verified implementation of the
DPLL algorithm in Dafny. Mathematics, 10(13), 2022

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 49 /57

Formalizing the CNF Transformation(s)

Input: formula =(x1 A x2) A ...
Output: (—x1 V —x2) A ...

2019: Proposed to Viorel lordache a BSc thesis project to implement, specify and verify

the CNF transformation in Dafny.

2020: BSc. defense (two transformations: the textbook approach and the Tseitin
transformation).

Viorel lordache and Stefan Ciobaca. Verifying the conversion into CNF in Dafny.
In Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors,
Logic, Language, Information, and Computation - 27th International Workshop,
WoLLIC 2021, Virtual Event, October 5-8, 2021, Proceedings, volume 13038 of
Lecture Notes in Computer Science, pages 150-166. Springer, 2021

2022: MSc. thesis on porting the CNF transformation to Stainless:
https://github.com/iordacheviorel/cnf-scala.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025

50 /57

https://github.com/iordacheviorel/cnf-scala

The QOI File Format

THE QUITE OK IMAGE FORMAT

e e |
R IR |

-t

|
Lol e | e | eow

" o Tz T ot |

anguages and Program Verification

The QOI File Format

QO

A QOI file consists of a 14-byte header, followed by any number of
data “chunks” and an 8-byte end marker.

qoi_header {
char magic[4]; // magic bytes "qoif"
uint32_t width // image width in pixels (BE)
uint32_t heigh // image height in pixels (BE)
uint8_t channel: // 3 = RGB, 4 = RGBA
uint8_t colorspace; // 0 = SRGB with Llinear alpha
// 1= all channels linear

h

The colorspace and channel fields are purely informative. They do
not change the way data chunks are encoded.

Images are encoded row by row, left to right, top to bottom. The
decoder and encoder start with {r: 0, g: 0, b: 0, a: 255} as the
previous pixel value. An image is complete when all pixels speci-
fied by width * height have been covered. Pixels are encoded as:

+ a run of the previous pixel

+ an index into an array of previously seen pixels
- a difference to the previous pixel value in r,g,b
« full r,g,b or r,g,b,a values

The color channels are assumed to not be premultiplied with the
alpha channel (“un-premultiplied alpha”).

A running array[64] (zero-initialized) of previously seen pixel
values is maintained by the encoder and decoder. Each pixel that is
seen by the encoder and decoder is put into this array at the
position formed by a hash function of the color value. In the
encoder, if the pixel value at the index matches the current pixel,
this index position is written to the stream as QOI_OP_INDEX. The
hash function for the index is:

index_position = (r * 34+ g *54b*7+a*11) % 64

Stefan Ciobacd Programming Languages and Program Verification .

THE QUITE OK IMAGE FORMAT

Specification Version 1.8, 2022.01.05 - goiformat.org — Dominic Szablewski

— QOI_OP_INDEX —————
Byte[0]
7654321680

L
+

o 0| index
L

2-bit tag bo®
6-bit index into the color index array: 0..63

A valid encoder must not issue 2 or more consecutive QOI_OP_INDEX
chunks to the same index. QOI_OP_RUN should be used instead.

— QOI_OP_DIFF ———
Byte[0]
76543210

0 1 db

\
t
dr | dg
|

2-bit tag bol

2-bit red channel difference from the previous pixel -2..
2-bit green channel difference from the previous pixel -2..1
2-bit blue channel difference from the previous pixel -2
The difference to the current channel values are using a wraparound

operation, so 1 - 2 will result in 255, while 255 + 1 will result
in @.

Values are stored as unsigned integers with a bias of 2. E.g. -2
is stored as 0 (b80). 1 is stored as 3 (bll).

The alpha value remains unchanged from the previous pixel.

— QOI_OP_LUMA

1
September 19th, 2025

52 /57

Verifying a QOIl implementation in Dafny

[Initial Image (sequence of pixels)]
A
|
|
encodeAEI decodeAEI | specOps
l
[Abstract Encoded Image (sequence of chunks)]
b
|
encodeBitsOps decodeBitsOps I specBits
|
l
[Encoded Image (sequence of bytes) J

Stefan Ciobacd and Diana-Elena Gratie. Implementing, specifying, and verifying
the QOI format in Dafny: A case study. In Nikolai Kosmatov and Laura Kovacs,
editors, Integrated Formal Methods - 19th International Conference, IFM 2024,
Manchester, UK, November 13-15, 2024, Proceedings, volume 15234 of Lecture
Notes in Computer Science, pages 35-52. Springer, 2024

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 53 /57

Impact

e Verified DPLL implementation: case study at University of Manchester;
e Cezar-Constantin Andrici: PhD under the direction of Catalin Hritcu;
o WoLLIC 2022 organized in lasi (https://wollic2022.github.io/);

e About 13 BSc./MSc. theses on Dafny or related topics (students learned Dafny, or
other systems, like F*, as part of their work on the project):
© (February, 2025) Alina-Adriana Haid3u: Verifying an algorithm for the discrete
version of the knapsack problem in Dafny (in Romanian);

@ (July, 2024) Roxana Mihaela Timon: Verifying an algorithm for the weighted activity
selection problem in Dafny (in Romanian);

@ (July, 2024) Daniel-Antoniu Dumitru: Implementing and Verifying the
Boyer-Moore-Horspool Algorithm in F* (in English);

© (June-July, 2023) Alexandru Donica: Verifying the DPLL algorithm F* (in
Romanian);

© (June-July, 2023) Bianca-Maria Buzild: Computing CNFs in F*. Implementation
and verification (in Romanian);

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 54 /57

https://wollic2022.github.io/

Impact

e 2024 /2025: elective lecture on Verification-Driven Program Development;

e Participation to VerifyThis 2024;
e VerifyThis 2025: Best Contributed Problem;

e 2025: Amazon Research Award for a project on extending Dafny with an interactive
proof mode.

https://profs.info.uaic.ro/stefan.ciobaca/aipmda.html

T) P

Stefan Ciobac3 (PI) Roxana-Mihaela Timon Andrei-Felix Similachi

- (alumnus)

(
SR
Stefan Mercas Lucian Gadioi (admin)

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 55 /57

https://profs.info.uaic.ro/stefan.ciobaca/aipmda.html

Outline

@ Perspectives

anguages and Program Verification

Perspectives

e Lessons learned:

e access to (old) research papers;
reproducibility;
mixing teaching and research;
some results | have not marketed properly;
new perspectives and ideas on old results.

e Future research work:
e make it easy to develop verified programs:
e improve proof automation/predictability,
e provide better standard library,
e relational verifier in Dafny;
e verified program verifier;
e solve the unification modulo axiomatized symbols problems.

e Acknowledgments: family, friends, mentors, students, co-authors, colleagues, fellow
researchers.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 57 /57

References.

[1] Carmine Abate, Roberto Blanco, Stefan Ciobacd, Adrien Durier, Deepak Garg,
Catalin Hritcu, Marco Patrignani, Eric Tanter, and Jérémy Thibault. An extended
account of trace-relating compiler correctness and secure compilation. ACM Trans.
Program. Lang. Syst., 43(4):14:1-14:48, 2021.

[2] Cezar-Constantin Andrici and Stefan Ciobacd. Verifying the DPLL algorithm in
dafny. In Mircea Marin and Adrian Cr3ciun, editors, Proceedings Third Symposium
on Working Formal Methods, FROM 2019, Timisoara, Romania, 3-5 September
2019, volume 303 of EPTCS, pages 3-15, 2019.

[3] Cezar-Constantin Andrici, Stefan Ciobacd, C3tslin Hritcu, Guido Martinez, Exequiel
Rivas, Eric Tanter, and Théo Winterhalter. Securing verified 10 programs against
unverified code in F*. Proc. ACM Program. Lang., 8(POPL):2226-2259, 2024.

[4] Cezar-Constantin Andrici and Stefan Ciobac3. A verified implementation of the
DPLL algorithm in Dafny. Mathematics, 10(13), 2022.

[5] Andrei Arusoaie, Stefan Ciobacs, Vlad Craciun, Dragos Gavrilut, and Dorel Lucanu.
A comparison of open-source static analysis tools for vulnerability detection in
C/C++ code. In Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie,
Tetsuo Ida, and Stephen M. Watt, editors, 19th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2017,
Timisoara, Romania, September 21-24, 2017, pages 161-168. IEEE Computer
Society, 2017.

[6] Andrei-Sebastian Buruiand and Stefan Ciobacs. Reducing total correctness to

partial correctness by a transformation of the language semantics. In Joachim
Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 57 /57

[7]

(8]

(9]

[10]

(11]

Niehren and David Sabel, editors, Proceedings Fifth International Workshop on
Rewriting Techniques for Program Transformations and Evaluation, WPTEQ@FSCD
2018, Oxford, England, 8th July 2018, volume 289 of EPTCS, pages 1-16, 2018.

Rohit Chadha, Vincent Cheval, Stefan Ciob4c3, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols. ACM Trans.
Comput. Log., 17(4):23, 2016.

Stefan Ciob4c3. From small-step semantics to big-step semantics, automatically. In
Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal Methods, 10th

International Conference, IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings,
volume 7940 of Lecture Notes in Computer Science, pages 347-361. Springer, 2013.

Stefan Ciobac3. Reducing partial equivalence to partial correctness. In Franz
Winkler, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt,
and Daniela Zaharie, editors, 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania,
September 22-25, 2014, pages 164—-171. IEEE Computer Society, 2014.

Stefan CiobAc3, Andrei Arusoaie, and Dorel Lucanu. Unification modulo builtins. In
Lawrence S. Moss, Ruy J. G. B. de Queiroz, and Maricarmen Martinez, editors,
Logic, Language, Information, and Computation - 25th International Workshop,
WoLLIC 2018, Bogota, Colombia, July 24-27, 2018, Proceedings, volume 10944 of
Lecture Notes in Computer Science, pages 179-195. Springer, 2018.

Stefan Ciobacd and Diana-Elena Gratie. Implementing, specifying, and verifying the
QOI format in Dafny: A case study. In Nikolai Kosmatov and Laura Kovdcs, editors,
Integrated Formal Methods - 19th International Conference, IFM 2024, Manchester,

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 57 /57

(12]

(13]

(14]

18]

UK, November 13-15, 2024, Proceedings, volume 15234 of Lecture Notes in
Computer Science, pages 35-52. Springer, 2024.

Stefan Ciobac3 and Dorel Lucanu. A coinductive approach to proving reachability
properties in logically constrained term rewriting systems. In Didier Galmiche,
Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th
International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 295-311. Springer, 2018.

Stefan Ciobacd, Dorel Lucanu, and Andrei-Sebastian Buruiand. Operationally-based
program equivalence proofs using LCTRSs. J. Log. Algebraic Methods Program.,
135:100894, 2023.

Stefan Ciobacd, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A
language-independent proof system for mutual program equivalence. In Stephan
Merz and Jun Pang, editors, Formal Methods and Software Engineering - 16th
International Conference on Formal Engineering Methods, ICFEM 2014,
Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, volume 8829 of
Lecture Notes in Computer Science, pages 75-90. Springer, 2014.

Stefan Ciobacd, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A theoretical
foundation for programming languages aggregation. In Mihai Codescu, Razvan
Diaconescu, and lonut Tutu, editors, Recent Trends in Algebraic Development
Techniques - 22nd International Workshop, WADT 2014, Sinaia, Romania,
September 4-7, 2014, Revised Selected Papers, volume 9463 of Lecture Notes in
Computer Science, pages 30-47. Springer, 2014.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 57 /57

[16]

(17]

(18]

[19]
[20]

[21]

Stefan Ciobacd, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A
language-independent proof system for full program equivalence. Formal Aspects
Comput., 28(3):469-497, 2016.

Viorel lordache and Stefan Ciobaca. Verifying the conversion into CNF in Dafny. In
Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors, Logic,
Language, Information, and Computation - 27th International Workshop, WoLLIC
2021, Virtual Event, October 5-8, 2021, Proceedings, volume 13038 of Lecture
Notes in Computer Science, pages 150-166. Springer, 2021.

Cynthia Kop and Naoki Nishida. Term rewriting with logical constraints. In Pascal
Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers of
Combining Systems - 9th International Symposium, FroCoS 2013, Nancy, France,
September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes in Computer
Science, pages 343-358. Springer, 2013.

Valeriu Motroi and Stefan Ciobacd. A typo in the Paterson-Wegman-de Champeaux
algorithm. CoRR, abs/2007.00304, 2020.

Valeriu Motroi and Stefan Ciobac3. A note on the performance of algorithms for
solving linear Diophantine equations in the naturals. CoRR, abs/2104.05200, 2021.

Grigore Rosu and Andrei Stefanescu. Checking reachability using matching logic. In
Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA,
October 21-25, 2012, pages 555-574. ACM, 2012.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 57 /57

[22]

(23]

[24]

Grigore Rosu, Andrei Stefanescu, Stefan Ciobaca, and Brandon M. Moore.
One-path reachability logic. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages
358-367. IEEE Computer Society, 2013.

Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. Test suites for
benchmarks of static analysis tools. In 2015 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 12-15, 2015.

Andrei Stefanescu, Stefan Ciobacd, Radu Mereutd, Brandon M. Moore,
Traian-Florin Serb3nuts, and Grigore Rosu. All-path reachability logic. In Gilles
Dowek, editor, Rewriting and Typed Lambda Calculi - Joint International
Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes
in Computer Science, pages 425—440. Springer, 2014.

Stefan Ciobacd Programming Languages and Program Verification September 19th, 2025 57 /57

	PhD Studies
	Matching Logic
	Proofs of Relational Properties
	The IZA Project
	LCTRSs
	Program Verification
	Perspectives
	References

