
Advances in Programming Languages and in Program Verification

Habilitation Thesis

S, tefan Ciobâcă

Alexandru Ioan Cuza University, Ias, i, Romania

September 19th, 2025

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 1 / 57

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 2 / 57

PhD Studies

Laboratoire Spécification et Vérification, ENS Cachan 2008-2011

1

PhD Thesis: Verification and Composition of Security Protocols with Applications to
Electronic Voting

Advisors: Véronique Cortier, Steve Kremer, and Jean Goubault-Larrecq.

1Maps source: Google Maps

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 3 / 57

Verification of Security Protocols

Protocol P
e.g., TLS, Kerberos, OAuth

|= Property ϕ
e.g., does not leak a key k

• Protocol (symbolic model):

A(u)

B(v)

out(A, s(b(c(u, rA), bA), kA)).
in(A, xA).
check(xA, pk(k)) = b(c(u, rA), bA)

‖
out(B, s(b(c(v , rB), bB), kB)).
in(B, xB).
check(xB , pk(k)) = b(c(v , rB), bB)

·

out(c, u(xA, bA)).

‖

out(c, u(xA, bA)).

·

out(c, rA)

‖

out(c, rB)

• Primitives (equational theory):

o(c(x , y), y) = x
check(s(x , y), pk(y)) = x
. . .

• Property (behavioral equivalence):

A(u) ‖ B(v) ≡ A(v) ‖ B(u)

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 4 / 57

Verification of Security Protocols

• CADE 2009: S, tefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing
knowledge in security protocols under convergent equational theories (extended version in
JAR 2012)

Input:
X = x1, x2, . . . , xn
Y = y1, y2, . . . , yn

Output: X
?≡ Y

• ESOP 2012: Rohit Chadha, S, tefan Ciobâcă, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols

Input: A,B(processes) Output: A
?≡ B

• CSF 2010: S, tefan Ciobâcă and Véronique Cortier. Protocol composition for arbitrary
primitives.

P |= ϕ
Q |= ϕ

=⇒ P ‖ Q
?

|= ϕ

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 5 / 57

Verification of Security Protocols

ESOP 2012: Rohit Chadha, S, tefan Ciobâcă, and Steve Kremer. Automated verification
of equivalence properties of cryptographic protocols
• Key idea 1 (encoding protocols as Horn clauses): in(x).out(enc(x , k))

w1 Bin(x).out enc(x, k) | X Bε x .

• Key idea 2 (encoding rewriting theory as Horn clauses): variants of terms: o(x , z) has a
variant of z for the case where x = c(z , y)

o(X ,Y) B z | X B c(z , y),Y B y

UNIF 2011 S, tefan Ciobâcă.
Computing finite variants for subterm convergent rewrite systems

• Key idea 3 (solving using theorem proving): tailored prover based on a refinement of
first-order resolution

https://github.com/ciobaca/akiss

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 6 / 57

https://github.com/ciobaca/akiss

Verification of Security Protocols (Post PhD)

Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Automated ver-
ification of equivalence properties of cryptographic protocols. ACM Trans. Comput.
Log., 17(4):23, 2016 (extended version of ESOP 2012)

• 2014: Cholewa, Meseguer, and Escobar. Variants of Variants and the Finite Variant
Property

“Ciobâcă Variants (Ciob-Variants)”

• Software
https://github.com/ciobaca/kiss

https://profs.info.uaic.ro/stefan.ciobaca/subvariant/

https://github.com/ciobaca/akiss

March 2025: King’s College in London: possibility of using (A-)KiSS for “Dolev Yao as a
service (or as a plug-in)”.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 7 / 57

https://github.com/ciobaca/kiss
https://profs.info.uaic.ro/stefan.ciobaca/subvariant/
https://github.com/ciobaca/akiss

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 8 / 57

Matching Logic

2011: DAK Project
kframework.org

UIUC

UAIC

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 9 / 57

kframework.org

K Framework: Programming Language Semantics

syntax AExp ::= Id | Int

| "(" AExp ")" [bracket]

| AExp "+" AExp [left, strict]

syntax Stmt ::= "{" "}"

| "{" Stmt "}"

| Id "=" AExp ";" [strict(2)]

| "if" BExp

"then" Stmt

"else" Stmt [strict(1)]

| "while" BExp "do" Stmt

> Stmt Stmt [left]

configuration <T color="yellow">

<k color="green"> $PGM:Pgm </k>

<state color="red"> .Map </state>

</T>

rule <k> X = I:Int; =></k>

<state>... X |-> (_ => I) ...</state>

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 10 / 57

K Framework: Idea

Operational Semantics

Intepretor Compiler Debugger Verifier . . .

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 11 / 57

Matching Logic

• Logic to reason about programs initially developed by Ros, u and Schulte.

Matching Logic Formulae: x ∧ x > 3;

Satisfaction Relation: γ, ρ |= ϕ;

Example: 4, {x 7→ 4} |= x ∧ x > 3.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 12 / 57

Reachability Logic

A reachability logic formula:

ϕ⇒ ϕ′

• operational semantics rule:

<k> X = I:Int; =></k>

<state>... X |-> (_ => I) ...</state>

• program specification:

<k> SUM </k> <state> n |-> n </state>

=>

<k> . </k> <state> n |-> n s |-> n(n + 1)÷ 2 ... </state>

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 13 / 57

Reachability Logic

Circularity
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Transitivity
A `C ϕ⇒+ ϕ′ A ∪ C ` ϕ′ ⇒ ϕ′′

A `C ϕ⇒ ϕ′′

Grigore Ros, u and Andrei S, tefănescu. Checking reachability using matching logic.
In Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, pages 555–574. ACM, 2012

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 14 / 57

Reachability Logic

Typical induction proof does not work:

A `C ϕ⇒ ϕ′ → A |=C ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′ →

∀γ0.

S |=γ0 A ∧ S |=+
γ0 C →

∀γ, ρ.

γ0 ⇒ γ ∧ γ, ρ |= ϕ→
∃γ′.(γ ⇒ γ′ ∧ γ′, ρ |= ϕ′),

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 15 / 57

Reachability Logic (One-Path)

Theorem soundness :

WeaklyWDSystem S ->

forall A C phi phi’,

PS A C phi phi’ ->

forall g,

Terminates S g ->

GStronglyValidssys true A g ->

GAlmostStronglyValidssys true C g ->

((IsEmpty C ->

GStronglyValid false (phi, phi’) g) /\

((not (IsEmpty C)) ->

GStronglyValid true (phi, phi’) g)).

Grigore Ros, u, Andrei S, tefănescu, Ştefan Ciobâcă, and Brandon M. Moore. One-
path reachability logic. In 28th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 358–
367. IEEE Computer Society, 2013

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 16 / 57

Reachability Logic (All-Path)
S

A1

A2

...

An

B1

B2

...

Bm

C1

...ϕ′

ϕ S

A1

A2

...

An

B1

B2

...

Bm

C1

...

ϕ′

ϕ

Step

|= ϕ→
∨

ϕl⇒∃ϕr∈S

∃FreeVars(ϕl).ϕl |= ∃c.(ϕ[c/�] ∧ ϕl [c/�]) ∧ ϕr → ϕ′

S ,A `C ϕ⇒∀ ϕ′

Andrei S, tefănescu, Ştefan Ciobâcă, Radu Mereut, ă, Brandon M. Moore, Traian-
Florin S, erbănut, ă, and Grigore Ros, u. All-path reachability logic. In Gilles Dowek,
editor, Rewriting and Typed Lambda Calculi - Joint International Conference, RTA-
TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes in Computer
Science, pages 425–440. Springer, 2014 (extended version in LMCS 2019)

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 17 / 57

Transforming Semantics

Small-step style:

e1 −→ e′1

e1 + e2 −→ e′1 + e2

e2 −→ e′2

v1 + e′2 −→ v1 + e′2 v1 + v2 −→ v1 +Int v2

Big-step style:
e1 ⇓ v1 e2 ⇓ v2

e1 + e2 ⇓ v1 +Int v2

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 18 / 57

Transforming Semantics
• Transform

M1 −→ N1 . . . Mn −→ Nn

M −→ N
φ

into
M1 ⇓ N1 . . . Mn ⇓ Nn N ⇓ V

M ⇓ V
φ,

• and add

V ⇓ V .
V ↓

Conditions:
• ground confluence for the small-step relation;
• values (defined by ↓) are normal forms w.r.t −→;
• star-soundness;
• star-completeness.

Ştefan Ciobâcă. From small-step semantics to big-step semantics, automatically. In
Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal Methods, 10th
International Conference, IFM 2013, Turku, Finland, June 10-14, 2013. Proceed-
ings, volume 7940 of Lecture Notes in Computer Science, pages 347–361. Springer,
2013

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 19 / 57

Impact

• Reachability Logic:
Runtime Verification, Inc.: https://runtimeverification.com

• iFM 2013

talk at SSLF 2012 (citations in ESOP 2014, . . ., ICFP 2025)

2014: Seminar Programmiersprachen (Freie Universität Berlin, Prof. Dr. E.
Fehr, Lilit Hakobyan)

TYPES 2017 S, tefan Ciobâcă and Vlad Andrei Tudose. Automatically
constructing a type system from the small-step semantics

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 20 / 57

https://runtimeverification.com

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 21 / 57

Proofs of Relational Properties

Operational Semantics

. . . Relational Verifier . . .

Relational properties = Properties of more than one program

Program equivalence = For the same input, the two programs produce the same output

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 22 / 57

Reducing Equivalence To Correctness

Start with two programming languages:
• CfgL, SL,ΣL, TL,AL;
• CfgR , SR ,ΣR , TR ,AR .

Construct the product language: Cfg, S ,Σ, T ,A.

Lemma (Lemma 1 in the SYNASC 2014 paper)

We have that
(γL, γR)→A (γ′L, γ

′
R)

if either
γL →AL γ

′
L

or
γR →AR γ

′
R .

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 23 / 57

Reducing Equivalence To Correctness

Theorem (Theorem 4 in the SYNASC 2014 paper)

Two programs PL and PR are partially equivalent iff

A |= (inputL(i), inputR(i))⇒ (CL,CR) ∧ outputL(CL) = outputR(CR).

Ştefan Ciobâcă. Reducing partial equivalence to partial correctness. In Franz Win-
kler, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt,
and Daniela Zaharie, editors, 16th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania,
September 22-25, 2014, pages 164–171. IEEE Computer Society, 2014

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 24 / 57

Programming Languages Aggregation

(S0,Σ0,Π0)

(SL,ΣL,ΠL) (SR ,ΣR ,ΠR)

(S ′,Σ′,Π′)

hL hR

h′L h′R

Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and
Grigore Ros, u. A theoretical foundation for pro-
gramming languages aggregation. In Mihai Code-
scu, Razvan Diaconescu, and Ionut Tutu, editors,
Recent Trends in Algebraic Development Tech-
niques - 22nd International Workshop, WADT
2014, Sinaia, Romania, September 4-7, 2014, Re-
vised Selected Papers, volume 9463 of Lecture
Notes in Computer Science, pages 30–47. Springer,
2014

Aa ={ιLy (ϕ1)⇒ ιLy (ϕ′1) | ϕ1 ⇒ ϕ′1 ∈ AL}∪

{ιRx (ϕ2)⇒ ιRx (ϕ′2) | ϕ2 ⇒ ϕ′2 ∈ AR}

Ap ={ιLy (ϕ1) ∧ ιRx (ϕ2)⇒ ∃x .∃y .(ιLy (ϕ′1) ∧ ιRx (ϕ′2)) |
ϕ1 ⇒ ϕ′1 ∈ AL, ϕ2 ⇒ ϕ′2 ∈ AR}

A = Aa ∪ Ap

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 25 / 57

Full Equivalence

c := n;

n := 1;

while (c != 1)

n := n + 1;

if (c % 2 ! = 0)

then c := 3 * c + 1

else c := c / 2

µf.λn.λa.
if n != 1

then

if n % 2 ! = 0

then f (3 * n + 1) (a + 1)

else f (n / 2) (a + 1)

else

a

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 26 / 57

Full Equivalence

Axiom
ϕ ∈ E

` ϕ ⇓∞ E
Step

|= ϕ1 ⇒∗ ϕ′1 |= ϕ2 ⇒∗ ϕ′2 ` 〈ϕ′1, ϕ′2〉 ⇓∞ E

` 〈ϕ1, ϕ2〉 ⇓∞ E

Conseq
ϕ→ ∃x̃ .ϕ′ ϕ′ ⇓∞ E

` ϕ ⇓∞ E
Case Analysis

ϕ ⇓∞ E ϕ′ ⇓∞ E

` ϕ ∨ ϕ′ ⇓∞ E

Circularity
|= ϕ1 ⇒+ ϕ′1 |= ϕ2 ⇒+ ϕ′2 ` 〈ϕ′1, ϕ′2〉 ⇓∞ E ∪ {〈ϕ1, ϕ2〉}

` 〈ϕ1, ϕ2〉 ⇓∞ E

Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Ros, u. A language-
independent proof system for mutual program equivalence. In Stephan Merz and
Jun Pang, editors, Formal Methods and Software Engineering - 16th International
Conference on Formal Engineering Methods, ICFEM 2014, Luxembourg, Luxem-
bourg, November 3-5, 2014. Proceedings, volume 8829 of Lecture Notes in Com-
puter Science, pages 75–90. Springer, 2014
Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Ros, u. A language-
independent proof system for full program equivalence. Formal Aspects Comput.,
28(3):469–497, 2016

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 27 / 57

Trace-Relating Compiler Correctness and Secure Compilation
• compiler correctness = any trace of the target program is also a trace of the source
program
• CompCert: additional undefined behavior event in the source
• CakeML: additional resource exhaustion event in the target

• secure compilation = if source program has a security property, then target program
also has the same property

the trinitarian view for compiler correctness extends to a number of definitions for
secure compilation

Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg,
Cătălin Hrit, cu, Marco Patrignani, Éric Tanter, and Jérémy Thibault. An extended
account of trace-relating compiler correctness and secure compilation. ACM Trans.
Program. Lang. Syst., 43(4):14:1–14:48, 2021 (extended version of ESOP 2020
paper)

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 28 / 57

Secure IO (SCIO?)

verified
program

strong
interface

compiled
program

intermediate
interface

unverified
context

weak
interface

target languagesource language

compile

add higher-
order contracts

link

add reference
monitor

Cezar-Constantin Andrici, Ştefan Ciobâcă, Cătălin Hrit, cu, Guido Mart́ınez, Exe-
quiel Rivas, Éric Tanter, and Théo Winterhalter. Securing verified IO programs
against unverified code in F*. Proc. ACM Program. Lang., 8(POPL):2226–2259,
2024

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 29 / 57

Impact

• language aggregation construction shows the power of language-parametric tools;

• Dagstuhl Seminar 18151 on Program Equivalence;

• PERR (Program Equivalence and Relational Reasoning);

• starting point for collaboration with Andrei-Sebastian Buruiană;

• Cezar-Constantin Andrici pursued a PhD thesis with Cătălin Hrit, cu.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 30 / 57

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 31 / 57

The IZA Project

• Bridge Grant between between the Alexandru Ioan Cuza University and Bitdefender.
• Goal: transfer the expertise of the FMSE (Formal Methods in Software Engineering)
group in verification and static analysis to Bitdefender.

Which static analyzer should we use?

• An example of a test case in the Toyota ITC [23] test suite:

void bit_shift_001 ()

{

int a = 1;

int ret;

ret = a << 32;

/*ERROR:

Bit shift error*/

sink = ret;

}

void bit_shift_001 ()

{

int a = 1;

int ret;

ret = a << 10;

/*NO ERROR:

Bit shift error*/

sink = ret;

}

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 32 / 57

The IZA Project
Tool D1 D2 D3 D4 D5 D6 D7 D8 D9
System 0 0 5 0 0 0 0 0 1
Clang 15 1 9 1 9 8 2 1 13
Cppcheck 0 0 0 0 0 0 1 0 0
Flawfinder 0 0 0 0 0 0 0 1 0
Flint++ 0 0 0 0 0 0 0 0 0
Frama-C 0 28 0 6 8 9 1 0 0
Infer 0 0 0 0 0 1 3 0 0
Oclint 0 0 0 0 0 0 0 0 0
Sparse 0 0 0 0 0 0 0 0 0
Splint 0 0 2 0 3 1 1 0 0
Uno 0 0 0 0 0 1 0 0 2

• D1 = Concurrency defects, D2 = Dynamic memory defects, D3 = Inappropriate code,
D4 = Misc defects, D5 = Numerical defects, D6 = Pointer related defects, D7 =
Resource management defects, D8 = Stack related defects, D9 = Static memory defects

Andrei Arusoaie, Ştefan Ciobâcă, Vlad Craciun, Dragos Gavrilut, and Dorel Lu-
canu. A comparison of open-source static analysis tools for vulnerability detection
in C/C++ code. In Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie,
Tetsuo Ida, and Stephen M. Watt, editors, 19th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, SYNASC 2017, Timisoara,
Romania, September 21-24, 2017, pages 161–168. IEEE Computer Society, 2017

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 33 / 57

Impact

• Citations2:

• March 2025:

Contact from Lund University

2Source: Google Scholar

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 34 / 57

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 35 / 57

Logically Constrained Term Rewriting Systems

K framework: most results do not make use of matching logic in its full generality.

Is there a simpler, but still useful, formalism?

A logically constrained term rewriting rule [18] is of the form

l −→ r if φ,

where l and r are terms and φ is a (typically first-order) constraint.

LCTRSs can be used to define operational semantics.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 36 / 57

Reducing Total Correctness to Partial Correctness

Vt︸︷︷︸
total correctness

(S ,P) = V︸︷︷︸
partial correctness

(Θ(S),Θ(P))

Main idea: for every rule ϕ⇒ ϕ′ add a rank: Θ(ϕ, n)⇒ Θ(ϕ, n − 1).

Theorem (Theorem 3.1 (Page 9) in our WPTE paper)

If there exists some term s ∈ TermΣ,Nat(Var) of sort Nat such that

Θ(S) |= Θ(ϕ, s)⇒∀ ∃M.Θ(ϕ′,M),

where M ∈ VarNat, then
S |=t ϕ⇒∀ ϕ′.

Andrei-Sebastian Buruiană and Ştefan Ciobâcă. Reducing total correctness to par-
tial correctness by a transformation of the language semantics. In Joachim Niehren
and David Sabel, editors, Proceedings Fifth International Workshop on Rewriting
Techniques for Program Transformations and Evaluation, WPTE@FSCD 2018, Ox-
ford, England, 8th July 2018, volume 289 of EPTCS, pages 1–16, 2018

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 37 / 57

A coinductive approach to reachability in LCTRSs

〈t | φ〉 ⇒ 〈t′ | φ′〉

[axiom] 〈 tl | ⊥ 〉 ⇒ 〈 tr | φr 〉

[subs]
〈 tl | φl ∧ ¬(∃x̃ .tl = tr ∧ φr) 〉 ⇒ 〈 tr | φr 〉

〈 tl | φl 〉 ⇒ 〈 tr | φr 〉

where
x̃ , var(tr , φr) \ var(tl , φl)
∃x̃ .tl = tr ∧ φr satisfiable

[der∀]
〈 t j | φj 〉 ⇒ 〈 tr | φr 〉, j ∈ {1, . . . , n}

〈 tl | φl 〉 ⇒ 〈 tr | φr 〉

where

〈 tl | φl 〉 is R−derivable and
φl →

∨
j∈{1,...,n} ∃ỹ

j .φj is valid

∆R(〈 tl | φl 〉) = {〈 t1 | φ1 〉, . . . , 〈 tn | φn 〉} and
ỹ j = var(t j , φj) \ var(tl , φl)

Theorem

The proof system is sound and complete.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 38 / 57

A coinductive approach to reachability in LCTRSs

[circ]

〈 tcr | φl ∧ φ ∧ φc
r 〉 ⇒ ϕr ,

〈 tl | φl ∧ ¬φ 〉 ⇒ ϕr

〈 tl | φl 〉 ⇒ ϕr

φ is ∃var(tcl , φ
c
l).tl = tcl ∧ φc

l ,
〈 tcl | φc

l 〉 ⇒ 〈 tcr | φc
r 〉 ∈ G

Theorem

If all of the reachability formulae in the set G are provable using guarded proof trees (i.e.,
trees where circ is used only after der∀), then all reachability formulae in G are also
valid.

Ştefan Ciobâcă and Dorel Lucanu. A coinductive approach to proving reachabil-
ity properties in logically constrained term rewriting systems. In Didier Galmiche,
Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th In-
ternational Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 295–311. Springer, 2018

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 39 / 57

Unification Modulo Builtins

n 7→ 2× N + 1, cnt 7→ C = cnt 7→ C ′ + N ′, n 7→ N ′ + 3

1: function unification(t1, t2)
2: . returns: a complete set of E -unifiers modulo builtins of t1 and t2

3: compute 〈 s1 | φσ1 〉, an abstraction of t1

4: compute 〈 s2 | φσ2 〉, an abstraction of t2

5: compute {τ1, . . . , τn}, a complete set of E -unifiers of s1 and s2

6: for i ∈ {1, . . . , n} do
7: τ ′i ← τi |X\X b

8: φ′i ← φσ1 ∧ φσ2 ∧
∧

x∈dom(τi)∩X b τi (x) = x

9: return {(τ ′1, φ′1), . . . , (τ ′n, φ
′
n)}

Ştefan Ciobâcă, Andrei Arusoaie, and Dorel Lucanu. Unification modulo builtins.
In Lawrence S. Moss, Ruy J. G. B. de Queiroz, and Maricarmen Mart́ınez, editors,
Logic, Language, Information, and Computation - 25th International Workshop,
WoLLIC 2018, Bogota, Colombia, July 24-27, 2018, Proceedings, volume 10944
of Lecture Notes in Computer Science, pages 179–195. Springer, 2018

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 40 / 57

Revisiting AC-unification

f (x , f (y , z)) = f (f (x , y), z) f (x , y) = f (y , x)

Topmost AC-unification: f ∗(u1, . . . , ul) = f ∗(v1, . . . , vk)

LDE: a1x1 + . . .+ anxn = b1x1 + . . .+ bnxn

• benchmark four algorithms for solving LDEs (a lexicographic enumeration algorithm, a
completion procedure, a graph-based algorithm, and the Slopes algorithm);
• implement AC-unfication as a library.

Valeriu Motroi and Ştefan Ciobâcă. A note on the performance of algorithms for
solving linear Diophantine equations in the naturals. CoRR, abs/2104.05200, 2021

Valeriu Motroi and Ştefan Ciobâcă. A typo in the Paterson-Wegman-de Cham-
peaux algorithm. CoRR, abs/2007.00304, 2020

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 41 / 57

Operationally-based program equivalence proofs using LCTRSs

Motivating example:

f = λn. if n = 0 then 0 else n + f (n − 1);

F = λn.λi .λa. if i ≤ n then F (n, i + 1, a + i) else a.

f(3) =

f(2), 3+� =

f(1), 2+�, 3+� =

f(0), 1+�, 2+�, 3+� =

0, 1+�, 2+�, 3+� =

1, 2+�, 3+� =

3, 3+� =

6

F(3, 0, 0) =

F(3, 1, 0 + 0) =

F(3, 2, 0 + 0 + 1) =

F(3, 3, 0 + 0 + 1 + 2) =

F(3, 4, 0 + 0 + 1 + 2 + 3) =

6

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 42 / 57

Operationally-based program equivalence proofs using LCTRSs

Axiom
G ,B `g P ≺..Q if ⊥

Base
G ,B `g P ≺..Q if φ ∧ ¬φB

G ,B `g P ≺..Q if φ

if |= φB →
∨

Q′ if φ′∈∆
≤K
RR

(Q)

φ′ → sub
(

(P,Q ′),B
)

Circ≺
G ,B `1 P ≺Q if φ ∧ ¬φG

G ,B `1 P ≺Q if φ

if |= φG →
∨

Q′ if φ′∈∆
≤K
RR

(Q)

φ′ → sub
(

(P,Q ′),G
)

Circ�
G ,B `g P �Q if φ ∧ ¬φG

G ,B `g P �Q if φ

if |= φG →
∨

Q′ if φ′∈∆
≥1−g,≤K
RR

(Q)

φ′ → sub
(

(P,Q ′),G
)

Step

G ,B `1 P i ≺..Q if φi (for all 1 ≤ i ≤ n)

G ,B `g P ≺..Q if φ ∧ ¬φ1 ∧ . . . ∧ ¬φn

G ,B `g P ≺..Q if φ

if ∆RL(P if φ)={P i if φi |1 ≤ i ≤ n}

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 43 / 57

Operationally-based program equivalence proofs using LCTRSs

• Motivating example: f ≺ F , f � F ,F � f , but cannot show F ≺ f

• Bounded stack: 〈x:=e; es, env, fs〉 −→ 〈e; x := �; es, env, fs〉 if ¬val(e) ∧ len(es) < k︸ ︷︷ ︸
constrain stack size

f no longer equivalent to F

• Optimization proofs using programs schemas:

Optimization PEC CORK RMT

Code hoisting X 0.32s 0.41s
Constant propagation X 0.33s 0.31s
Copy propagation X 0.33s 0.26s
If-conversion X 0.34s 0.48s
Partial redundancy X 0.34s 0.75s
elimination
Loop invariant X 3.48s 3.79s
code motion
Loop peeling X 3.26s 0.97s
Loop unrolling X 12.17s 7.09s

Loop unswitching X 8.19s 4.71s
Software pipelining X 8.02s 3.56s
Loop fission Xp 23.45s ◦ 10.40s
Loop fusion Xp 23.34s ◦ 9.67s
Loop interchange Xp 29.30s � 108.63s
Loop reversal Xp 8.41s 2.70s
Loop skewing Xp 8.50s 7.68s
Loop flattening × × � 8.14s
Loop strength × 5.63s 5.26s
reduction
Loop tiling 01 × 10.94s

25.41s
Loop tiling 02 � 21.58s

Ştefan Ciobâcă, Dorel Lucanu, and Andrei-Sebastian Buruiană. Operationally-
based program equivalence proofs using LCTRSs. J. Log. Algebraic Methods Pro-
gram., 135:100894, 2023

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 44 / 57

Impact

• ISR 2019: invited speaker (RMT tool);

• co-chair WPTE 2022, WPTE 2023, SC member since 2024;

• Unification modulo builtins: José Meseguer: “The recent work of S. Ciobaca, A.
Arusoaie, and D. Lucanu [22] saves the day.”;

• Unification work: Dennis de Champeaux, after a 20-year retirement (Journal of
Automated Reasoning 2022);

• AC Unification Library: potential integration into the Tamarin prover.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 45 / 57

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 46 / 57

Program Verification (using Dafny)

Dafny is a verification-enabled programming language.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 47 / 57

Formalizing the CDCL Algorithm

Input: formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x4) ∧ . . .
Output: is the formula satisfiable?

2018: Proposed to Cezar-Constantin Andrici as a BSc thesis project to implement,
specify and verify CDCL in Dafny.

1 Unit propagation (or Boolean constraint propagation)

2 Fast data structures.

3 Variable ordering heuristics.

4 Backjumping

5 Conflict analysis

6 Clause learning and clause forgetting

7 Restart strategy

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 48 / 57

Formalizing the CDCLDPLL Algorithm

2019: We implemented, specified and verified a simplified version of DPLL in Dafny.

1 Unit propagation (or Boolean constraint propagation)

2 Fast data structures.

3 Variable ordering heuristics.

4 Backjumping

5 Conflict analysis

6 Clause learning and clause forgetting

7 Restart strategy

Cezar-Constantin Andrici and Ştefan Ciobâcă. Verifying the DPLL algorithm in
dafny. In Mircea Marin and Adrian Crăciun, editors, Proceedings Third Symposium
on Working Formal Methods, FROM 2019, Timişoara, Romania, 3-5 September
2019, volume 303 of EPTCS, pages 3–15, 2019
Cezar-Constantin Andrici and S, tefan Ciobâcă. A verified implementation of the
DPLL algorithm in Dafny. Mathematics, 10(13), 2022

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 49 / 57

Formalizing the CNF Transformation(s)

Input: formula ¬(x1 ∧ x2) ∧ . . .
Output: (¬x1 ∨ ¬x2) ∧ . . .

2019: Proposed to Viorel Iordache a BSc thesis project to implement, specify and verify
the CNF transformation in Dafny.

2020: BSc. defense (two transformations: the textbook approach and the Tseitin
transformation).

Viorel Iordache and Ştefan Ciobâcă. Verifying the conversion into CNF in Dafny.
In Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors,
Logic, Language, Information, and Computation - 27th International Workshop,
WoLLIC 2021, Virtual Event, October 5-8, 2021, Proceedings, volume 13038 of
Lecture Notes in Computer Science, pages 150–166. Springer, 2021

2022: MSc. thesis on porting the CNF transformation to Stainless:
https://github.com/iordacheviorel/cnf-scala.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 50 / 57

https://github.com/iordacheviorel/cnf-scala

The QOI File Format

THE QUITE OK IMAGE FORMAT
Specification Version 1.0, 2022.01.05 – qoiformat.org – Dominic Szablewski

A QOI file consists of a 14-byte header, followed by any number of
data “chunks” and an 8-byte end marker.

qoi_header {
 char magic[4]; // magic bytes "qoif"
 uint32_t width; // image width in pixels (BE)
 uint32_t height; // image height in pixels (BE)
 uint8_t channels; // 3 = RGB, 4 = RGBA
 uint8_t colorspace; // 0 = sRGB with linear alpha
 // 1 = all channels linear
};

The colorspace and channel fields are purely informative. They do
not change the way data chunks are encoded.

Images are encoded row by row, left to right, top to bottom. The
decoder and encoder start with {r: 0, g: 0, b: 0, a: 255} as the
previous pixel value. An image is complete when all pixels speci-
fied by width * height have been covered. Pixels are encoded as:

 • a run of the previous pixel
 • an index into an array of previously seen pixels
 • a difference to the previous pixel value in r,g,b
 • full r,g,b or r,g,b,a values

The color channels are assumed to not be premultiplied with the
alpha channel (“un-premultiplied alpha”).

A running array[64] (zero-initialized) of previously seen pixel
values is maintained by the encoder and decoder. Each pixel that is
seen by the encoder and decoder is put into this array at the
position formed by a hash function of the color value. In the
encoder, if the pixel value at the index matches the current pixel,
this index position is written to the stream as QOI_OP_INDEX. The
hash function for the index is:

 index_position = (r * 3 + g * 5 + b * 7 + a * 11) % 64

Each chunk starts with a 2- or 8-bit tag, followed by a number of
data bits. The bit length of chunks is divisible by 8 - i.e. all
chunks are byte aligned. All values encoded in these data bits have
the most significant bit on the left. The 8-bit tags have
precedence over the 2-bit tags. A decoder must check for the
presence of an 8-bit tag first.

The byte stream's end is marked with 7 0x00 bytes followed by a
single 0x01 byte.

The possible chunks are:

┌─ QOI_OP_RGB ────────────┬─────────┬─────────┬─────────┐
│ Byte[0] │ Byte[1] │ Byte[2] │ Byte[3] │
│ 7 6 5 4 3 2 1 0 │ 7 .. 0 │ 7 .. 0 │ 7 .. 0 │
│─────────────────────────┼─────────┼─────────┼─────────│
│ 1 1 1 1 1 1 1 0 │ red │ green │ blue │
└─────────────────────────┴─────────┴─────────┴─────────┘

8-bit tag b11111110
8-bit red channel value
8-bit green channel value
8-bit blue channel value

The alpha value remains unchanged from the previous pixel.

┌─ QOI_OP_RGBA ───────────┬─────────┬─────────┬─────────┬─────────┐
│ Byte[0] │ Byte[1] │ Byte[2] │ Byte[3] │ Byte[4] │
│ 7 6 5 4 3 2 1 0 │ 7 .. 0 │ 7 .. 0 │ 7 .. 0 │ 7 .. 0 │
│─────────────────────────┼─────────┼─────────┼─────────┼─────────│
│ 1 1 1 1 1 1 1 1 │ red │ green │ blue │ alpha │
└─────────────────────────┴─────────┴─────────┴─────────┴─────────┘

8-bit tag b11111111
8-bit red channel value
8-bit green channel value
8-bit blue channel value
8-bit alpha channel value

┌─ QOI_OP_INDEX ──────────┐
│ Byte[0] │
│ 7 6 5 4 3 2 1 0 │
│───────┼─────────────────│
│ 0 0 │ index │
└───────┴─────────────────┘

2-bit tag b00
6-bit index into the color index array: 0..63

A valid encoder must not issue 2 or more consecutive QOI_OP_INDEX
chunks to the same index. QOI_OP_RUN should be used instead.

┌─ QOI_OP_DIFF ───────────┐
│ Byte[0] │
│ 7 6 5 4 3 2 1 0 │
│───────┼─────┼─────┼─────│
│ 0 1 │ dr │ dg │ db │
└───────┴─────┴─────┴─────┘

2-bit tag b01
2-bit red channel difference from the previous pixel -2..1
2-bit green channel difference from the previous pixel -2..1
2-bit blue channel difference from the previous pixel -2..1

The difference to the current channel values are using a wraparound
operation, so 1 - 2 will result in 255, while 255 + 1 will result
in 0.

Values are stored as unsigned integers with a bias of 2. E.g. -2
is stored as 0 (b00). 1 is stored as 3 (b11).

The alpha value remains unchanged from the previous pixel.

┌─ QOI_OP_LUMA ───────────┬─────────────────────────┐
│ Byte[0] │ Byte[1] │
│ 7 6 5 4 3 2 1 0 │ 7 6 5 4 3 2 1 0 │
│───────┼─────────────────┼─────────────┼───────────│
│ 1 0 │ diff green │ dr - dg │ db - dg │
└───────┴─────────────────┴─────────────┴───────────┘

2-bit tag b10
6-bit green channel difference from the previous pixel -32..31
4-bit red channel difference minus green channel difference -8..7
4-bit blue channel difference minus green channel difference -8..7

The green channel is used to indicate the general direction of
change and is encoded in 6 bits. The red and blue channels (dr
and db) base their diffs off of the green channel difference. I.e.:

 dr_dg = (cur_px.r - prev_px.r) - (cur_px.g - prev_px.g)
 db_dg = (cur_px.b - prev_px.b) - (cur_px.g - prev_px.g)

The difference to the current channel values are using a wraparound
operation, so 10 - 13 will result in 253, while 250 + 7 will result
in 1.

Values are stored as unsigned integers with a bias of 32 for the
green channel and a bias of 8 for the red and blue channel.

The alpha value remains unchanged from the previous pixel.

┌─ QOI_OP_RUN ────────────┐
│ Byte[0] │
│ 7 6 5 4 3 2 1 0 │
│───────┼─────────────────│
│ 1 1 │ run │
└───────┴─────────────────┘

2-bit tag b11
6-bit run-length repeating the previous pixel: 1..62

The run-length is stored with a bias of -1. Note that the run-
lengths 63 and 64 (b111110 and b111111) are illegal as they are
occupied by the QOI_OP_RGB and QOI_OP_RGBA tags.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 51 / 57

The QOI File Format

THE QUITE OK IMAGE FORMAT
Specification Version 1.0, 2022.01.05 – qoiformat.org – Dominic Szablewski

A QOI file consists of a 14-byte header, followed by any number of
data “chunks” and an 8-byte end marker.

qoi_header {
 char magic[4]; // magic bytes "qoif"
 uint32_t width; // image width in pixels (BE)
 uint32_t height; // image height in pixels (BE)
 uint8_t channels; // 3 = RGB, 4 = RGBA
 uint8_t colorspace; // 0 = sRGB with linear alpha
 // 1 = all channels linear
};

The colorspace and channel fields are purely informative. They do
not change the way data chunks are encoded.

Images are encoded row by row, left to right, top to bottom. The
decoder and encoder start with {r: 0, g: 0, b: 0, a: 255} as the
previous pixel value. An image is complete when all pixels speci-
fied by width * height have been covered. Pixels are encoded as:

 • a run of the previous pixel
 • an index into an array of previously seen pixels
 • a difference to the previous pixel value in r,g,b
 • full r,g,b or r,g,b,a values

The color channels are assumed to not be premultiplied with the
alpha channel (“un-premultiplied alpha”).

A running array[64] (zero-initialized) of previously seen pixel
values is maintained by the encoder and decoder. Each pixel that is
seen by the encoder and decoder is put into this array at the
position formed by a hash function of the color value. In the
encoder, if the pixel value at the index matches the current pixel,
this index position is written to the stream as QOI_OP_INDEX. The
hash function for the index is:

 index_position = (r * 3 + g * 5 + b * 7 + a * 11) % 64

Each chunk starts with a 2- or 8-bit tag, followed by a number of
data bits. The bit length of chunks is divisible by 8 - i.e. all
chunks are byte aligned. All values encoded in these data bits have
the most significant bit on the left. The 8-bit tags have
precedence over the 2-bit tags. A decoder must check for the
presence of an 8-bit tag first.

The byte stream's end is marked with 7 0x00 bytes followed by a
single 0x01 byte.

The possible chunks are:

┌─ QOI_OP_RGB ────────────┬─────────┬─────────┬─────────┐
│ Byte[0] │ Byte[1] │ Byte[2] │ Byte[3] │
│ 7 6 5 4 3 2 1 0 │ 7 .. 0 │ 7 .. 0 │ 7 .. 0 │
│─────────────────────────┼─────────┼─────────┼─────────│
│ 1 1 1 1 1 1 1 0 │ red │ green │ blue │
└─────────────────────────┴─────────┴─────────┴─────────┘

8-bit tag b11111110
8-bit red channel value
8-bit green channel value
8-bit blue channel value

The alpha value remains unchanged from the previous pixel.

┌─ QOI_OP_RGBA ───────────┬─────────┬─────────┬─────────┬─────────┐
│ Byte[0] │ Byte[1] │ Byte[2] │ Byte[3] │ Byte[4] │
│ 7 6 5 4 3 2 1 0 │ 7 .. 0 │ 7 .. 0 │ 7 .. 0 │ 7 .. 0 │
│─────────────────────────┼─────────┼─────────┼─────────┼─────────│
│ 1 1 1 1 1 1 1 1 │ red │ green │ blue │ alpha │
└─────────────────────────┴─────────┴─────────┴─────────┴─────────┘

8-bit tag b11111111
8-bit red channel value
8-bit green channel value
8-bit blue channel value
8-bit alpha channel value

┌─ QOI_OP_INDEX ──────────┐
│ Byte[0] │
│ 7 6 5 4 3 2 1 0 │
│───────┼─────────────────│
│ 0 0 │ index │
└───────┴─────────────────┘

2-bit tag b00
6-bit index into the color index array: 0..63

A valid encoder must not issue 2 or more consecutive QOI_OP_INDEX
chunks to the same index. QOI_OP_RUN should be used instead.

┌─ QOI_OP_DIFF ───────────┐
│ Byte[0] │
│ 7 6 5 4 3 2 1 0 │
│───────┼─────┼─────┼─────│
│ 0 1 │ dr │ dg │ db │
└───────┴─────┴─────┴─────┘

2-bit tag b01
2-bit red channel difference from the previous pixel -2..1
2-bit green channel difference from the previous pixel -2..1
2-bit blue channel difference from the previous pixel -2..1

The difference to the current channel values are using a wraparound
operation, so 1 - 2 will result in 255, while 255 + 1 will result
in 0.

Values are stored as unsigned integers with a bias of 2. E.g. -2
is stored as 0 (b00). 1 is stored as 3 (b11).

The alpha value remains unchanged from the previous pixel.

┌─ QOI_OP_LUMA ───────────┬─────────────────────────┐
│ Byte[0] │ Byte[1] │
│ 7 6 5 4 3 2 1 0 │ 7 6 5 4 3 2 1 0 │
│───────┼─────────────────┼─────────────┼───────────│
│ 1 0 │ diff green │ dr - dg │ db - dg │
└───────┴─────────────────┴─────────────┴───────────┘

2-bit tag b10
6-bit green channel difference from the previous pixel -32..31
4-bit red channel difference minus green channel difference -8..7
4-bit blue channel difference minus green channel difference -8..7

The green channel is used to indicate the general direction of
change and is encoded in 6 bits. The red and blue channels (dr
and db) base their diffs off of the green channel difference. I.e.:

 dr_dg = (cur_px.r - prev_px.r) - (cur_px.g - prev_px.g)
 db_dg = (cur_px.b - prev_px.b) - (cur_px.g - prev_px.g)

The difference to the current channel values are using a wraparound
operation, so 10 - 13 will result in 253, while 250 + 7 will result
in 1.

Values are stored as unsigned integers with a bias of 32 for the
green channel and a bias of 8 for the red and blue channel.

The alpha value remains unchanged from the previous pixel.

┌─ QOI_OP_RUN ────────────┐
│ Byte[0] │
│ 7 6 5 4 3 2 1 0 │
│───────┼─────────────────│
│ 1 1 │ run │
└───────┴─────────────────┘

2-bit tag b11
6-bit run-length repeating the previous pixel: 1..62

The run-length is stored with a bias of -1. Note that the run-
lengths 63 and 64 (b111110 and b111111) are illegal as they are
occupied by the QOI_OP_RGB and QOI_OP_RGBA tags.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 52 / 57

Verifying a QOI implementation in Dafny

Initial Image (sequence of pixels)

Abstract Encoded Image (sequence of chunks)

Encoded Image (sequence of bytes)

encodeAEI

encodeBitsOps

decodeAEI

decodeBitsOps

specOps

specBits

Ştefan Ciobâcă and Diana-Elena Gratie. Implementing, specifying, and verifying
the QOI format in Dafny: A case study. In Nikolai Kosmatov and Laura Kovács,
editors, Integrated Formal Methods - 19th International Conference, IFM 2024,
Manchester, UK, November 13-15, 2024, Proceedings, volume 15234 of Lecture
Notes in Computer Science, pages 35–52. Springer, 2024

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 53 / 57

Impact

• Verified DPLL implementation: case study at University of Manchester;

• Cezar-Constantin Andrici: PhD under the direction of Cătălin Hrit, cu;

• WoLLIC 2022 organized in Ias, i (https://wollic2022.github.io/);

• About 13 BSc./MSc. theses on Dafny or related topics (students learned Dafny, or
other systems, like F?, as part of their work on the project):

1 (February, 2025) Alina-Adriana Haidău: Verifying an algorithm for the discrete
version of the knapsack problem in Dafny (in Romanian);

2 (July, 2024) Roxana Mihaela Timon: Verifying an algorithm for the weighted activity
selection problem in Dafny (in Romanian);

3 (July, 2024) Daniel-Antoniu Dumitru: Implementing and Verifying the
Boyer-Moore-Horspool Algorithm in F? (in English);

4 (June-July, 2023) Alexandru Donica: Verifying the DPLL algorithm F? (in
Romanian);

5 (June-July, 2023) Bianca-Maria Buzilă: Computing CNFs in F?. Implementation
and verification (in Romanian);

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 54 / 57

https://wollic2022.github.io/

Impact

• 2024/2025: elective lecture on Verification-Driven Program Development;

• Participation to VerifyThis 2024;
• VerifyThis 2025: Best Contributed Problem;

• 2025: Amazon Research Award for a project on extending Dafny with an interactive
proof mode.

https://profs.info.uaic.ro/stefan.ciobaca/aipmda.html

S, tefan Ciobâcă (PI) Roxana-Mihaela Timon Andrei-Felix Similachi
(alumnus)

S, tefan Mercas, Lucian Gâdioi (admin)

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 55 / 57

https://profs.info.uaic.ro/stefan.ciobaca/aipmda.html

Outline

1 PhD Studies

2 Matching Logic

3 Proofs of Relational Properties

4 The IZA Project

5 LCTRSs

6 Program Verification

7 Perspectives

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 56 / 57

Perspectives

• Lessons learned:
• access to (old) research papers;
• reproducibility;
• mixing teaching and research;
• some results I have not marketed properly;
• new perspectives and ideas on old results.

• Future research work:
• make it easy to develop verified programs:
• improve proof automation/predictability,
• provide better standard library,
• relational verifier in Dafny;

• verified program verifier;
• solve the unification modulo axiomatized symbols problems.

• Acknowledgments: family, friends, mentors, students, co-authors, colleagues, fellow
researchers.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 57 / 57

References.

[1] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg,
Cătălin Hrit, cu, Marco Patrignani, Éric Tanter, and Jérémy Thibault. An extended
account of trace-relating compiler correctness and secure compilation. ACM Trans.
Program. Lang. Syst., 43(4):14:1–14:48, 2021.

[2] Cezar-Constantin Andrici and Ştefan Ciobâcă. Verifying the DPLL algorithm in
dafny. In Mircea Marin and Adrian Crăciun, editors, Proceedings Third Symposium
on Working Formal Methods, FROM 2019, Timişoara, Romania, 3-5 September
2019, volume 303 of EPTCS, pages 3–15, 2019.

[3] Cezar-Constantin Andrici, Ştefan Ciobâcă, Cătălin Hrit, cu, Guido Mart́ınez, Exequiel
Rivas, Éric Tanter, and Théo Winterhalter. Securing verified IO programs against
unverified code in F*. Proc. ACM Program. Lang., 8(POPL):2226–2259, 2024.

[4] Cezar-Constantin Andrici and S, tefan Ciobâcă. A verified implementation of the
DPLL algorithm in Dafny. Mathematics, 10(13), 2022.

[5] Andrei Arusoaie, Ştefan Ciobâcă, Vlad Craciun, Dragos Gavrilut, and Dorel Lucanu.
A comparison of open-source static analysis tools for vulnerability detection in
C/C++ code. In Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie,
Tetsuo Ida, and Stephen M. Watt, editors, 19th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2017,
Timisoara, Romania, September 21-24, 2017, pages 161–168. IEEE Computer
Society, 2017.

[6] Andrei-Sebastian Buruiană and Ştefan Ciobâcă. Reducing total correctness to
partial correctness by a transformation of the language semantics. In Joachim

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 57 / 57

Niehren and David Sabel, editors, Proceedings Fifth International Workshop on
Rewriting Techniques for Program Transformations and Evaluation, WPTE@FSCD
2018, Oxford, England, 8th July 2018, volume 289 of EPTCS, pages 1–16, 2018.

[7] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols. ACM Trans.
Comput. Log., 17(4):23, 2016.

[8] Ştefan Ciobâcă. From small-step semantics to big-step semantics, automatically. In
Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal Methods, 10th
International Conference, IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings,
volume 7940 of Lecture Notes in Computer Science, pages 347–361. Springer, 2013.

[9] Ştefan Ciobâcă. Reducing partial equivalence to partial correctness. In Franz
Winkler, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt,
and Daniela Zaharie, editors, 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2014, Timisoara, Romania,
September 22-25, 2014, pages 164–171. IEEE Computer Society, 2014.

[10] Ştefan Ciobâcă, Andrei Arusoaie, and Dorel Lucanu. Unification modulo builtins. In
Lawrence S. Moss, Ruy J. G. B. de Queiroz, and Maricarmen Mart́ınez, editors,
Logic, Language, Information, and Computation - 25th International Workshop,
WoLLIC 2018, Bogota, Colombia, July 24-27, 2018, Proceedings, volume 10944 of
Lecture Notes in Computer Science, pages 179–195. Springer, 2018.

[11] Ştefan Ciobâcă and Diana-Elena Gratie. Implementing, specifying, and verifying the
QOI format in Dafny: A case study. In Nikolai Kosmatov and Laura Kovács, editors,
Integrated Formal Methods - 19th International Conference, IFM 2024, Manchester,

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 57 / 57

UK, November 13-15, 2024, Proceedings, volume 15234 of Lecture Notes in
Computer Science, pages 35–52. Springer, 2024.

[12] Ştefan Ciobâcă and Dorel Lucanu. A coinductive approach to proving reachability
properties in logically constrained term rewriting systems. In Didier Galmiche,
Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th
International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 295–311. Springer, 2018.

[13] Ştefan Ciobâcă, Dorel Lucanu, and Andrei-Sebastian Buruiană. Operationally-based
program equivalence proofs using LCTRSs. J. Log. Algebraic Methods Program.,
135:100894, 2023.

[14] Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Ros, u. A
language-independent proof system for mutual program equivalence. In Stephan
Merz and Jun Pang, editors, Formal Methods and Software Engineering - 16th
International Conference on Formal Engineering Methods, ICFEM 2014,
Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, volume 8829 of
Lecture Notes in Computer Science, pages 75–90. Springer, 2014.

[15] Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Ros, u. A theoretical
foundation for programming languages aggregation. In Mihai Codescu, Razvan
Diaconescu, and Ionut Tutu, editors, Recent Trends in Algebraic Development
Techniques - 22nd International Workshop, WADT 2014, Sinaia, Romania,
September 4-7, 2014, Revised Selected Papers, volume 9463 of Lecture Notes in
Computer Science, pages 30–47. Springer, 2014.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 57 / 57

[16] Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Ros, u. A
language-independent proof system for full program equivalence. Formal Aspects
Comput., 28(3):469–497, 2016.

[17] Viorel Iordache and Ştefan Ciobâcă. Verifying the conversion into CNF in Dafny. In
Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz, editors, Logic,
Language, Information, and Computation - 27th International Workshop, WoLLIC
2021, Virtual Event, October 5-8, 2021, Proceedings, volume 13038 of Lecture
Notes in Computer Science, pages 150–166. Springer, 2021.

[18] Cynthia Kop and Naoki Nishida. Term rewriting with logical constraints. In Pascal
Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers of
Combining Systems - 9th International Symposium, FroCoS 2013, Nancy, France,
September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes in Computer
Science, pages 343–358. Springer, 2013.

[19] Valeriu Motroi and Ştefan Ciobâcă. A typo in the Paterson-Wegman-de Champeaux
algorithm. CoRR, abs/2007.00304, 2020.

[20] Valeriu Motroi and Ştefan Ciobâcă. A note on the performance of algorithms for
solving linear Diophantine equations in the naturals. CoRR, abs/2104.05200, 2021.

[21] Grigore Ros, u and Andrei S, tefănescu. Checking reachability using matching logic. In
Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA,
October 21-25, 2012, pages 555–574. ACM, 2012.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 57 / 57

[22] Grigore Ros, u, Andrei S, tefănescu, Ştefan Ciobâcă, and Brandon M. Moore.
One-path reachability logic. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages
358–367. IEEE Computer Society, 2013.

[23] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. Test suites for
benchmarks of static analysis tools. In 2015 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 12–15, 2015.

[24] Andrei S, tefănescu, Ştefan Ciobâcă, Radu Mereut, ă, Brandon M. Moore,
Traian-Florin S, erbănut, ă, and Grigore Ros, u. All-path reachability logic. In Gilles
Dowek, editor, Rewriting and Typed Lambda Calculi - Joint International
Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes
in Computer Science, pages 425–440. Springer, 2014.

S, tefan Ciobâcă Programming Languages and Program Verification September 19th, 2025 57 / 57

	PhD Studies
	Matching Logic
	Proofs of Relational Properties
	The IZA Project
	LCTRSs
	Program Verification
	Perspectives
	References

