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What is tensorial (co)strength?

Let F : C → C be a functor and � :M×C → C an action of a monoidal
category (M,⊗, I) on the category C [Bén67, McC00, Par77].

F is said to have tensorial
strength* if there is a natural
transformation with components
strM,A : M � FA→ F (M � A).

F is said to have tensorial
costrength* if there is a natural
transformation with components
cstM,A : F (M � A)→ M � FA.

*Both must satisfy coherence conditions for the action unitor and
associator.
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Coherence conditions

F (M � (N � X ))
∼=
��

cst // M � F (N � X )
id�cst
��

F (I � X ) cst //

∼= ""

I � F (X )

∼=||
F ((M ⊗ N)� X )

cst ((

M � (N � F (X ))

∼=vv

F (X )

(M ⊗ N)� F (X )
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Why is tensorial (co)strength important?

Because it matters where we do certain ”computations“ and how we
chain them

It provides flexibility in programming because we can interchange
functor applications
It provides means to encapsulate and extract data, or rather actions
over data
They can be applied in conjunction with profunctor optics [CEG+24]
to transform and compose them more easily
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Why is tensorial (co)strength important?

Every endofunctor in Set has (unique!) (Set,×,1)-strength,
M × FA→ F (M × A), this is why it is “invisible” most of the time

Every endofunctor in Set has (again unique!) (Setop,×,1)-costrength
F ([M,A])→ [M,FA] because of the adjunction M ×− a [M,−] (the
Writer comonad and Reader monad repectively) [HK11]
There are more examples of monoidal products than the cartesian
product
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(Set,×, 1)-costrengths

The Reader monad X 7→ [S,X ] has costrengths in one-to-one
correspondence with the elements of S, so not unique

The Costate comonad X 7→ S × [S,X ] has costrengths (not unique!)
Functors that have F∅ 6= ∅ do not have (Set,×,1)-costrength
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(Set, +, 0)-costrengths

Filtrable functors, those which have φ : F (1 +−)⇒ F−, have
costrength

The powerset functor P is such an example,
P(M + X )→ M + P(X ), these functors simply ”forget“ or filter the
values of type M and re-embeds the new values
Because Set is distributive, the Writer comonad has costrength:
S × (M + X ) ∼= (S ×M) + (S × X ) −→ M + (S × X )
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Other costrengths

Considering (End(A), ◦, IdA) acting on A that is copowered then a
functor F : A → A, FX =

∐
s∈S X , has (End(A), ◦, IdA) -costrength

that is a distributive law over all endofunctors

Consider the endofunctor category [Set,Set]appl of applicative
functors [MP08] acting via application on Set. Every
[Set,Set]appl-costrong functor is a traversable functor by definition,
T ◦ F → F ◦ T [JR12]
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Our results

Theorem - Cartesian costrong-copointed isomorphism
Let (M,×,1) be a cartesian category. There is an isomorphism between
the category [M,M]cst of (M,×, 1)-costrong endofunctors on M, and
the category of copointed endofunctors [M,M] ↓ idM.

Balan, Pantelimon (UNSTPB) Tensorial (Co)strength FROM 2025 9 / 18



Proof

The correspondences are as follows, we define the maps:
Φ : [M,M]cst → [M,M] ↓ idM maps (F , cst) to (F , ε) where

ε : F (M)
∼= // F (M × 1) cst // M × F (1) π1 // M

And Ψ : [M,M] ↓ idM → [M,M]cst maps a copointed (F , ε) to
(F , cst), with costrength given by

cst : F (M × X )
〈Fπ1,Fπ2〉 // F (M)× F (X ) ε×id // M × F (X )

where 〈−,−〉 denotes the pairing into the product.
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Examples of cartesian categories

Consider a bounded meet-semilattice, it can be modeled as a cartesian
monoidal category (C,∧,>) where A ≤ B ≡ A→ B.
A functor F : C → C with the property FA ≤ A ≡ FA→ A is in essence a
copointed functor. Following the previously mentioned mapping, we can
construct the costrength:

FM ≤ M ⇒ FM ∧ FA ≤ M ∧ FA

M ∧ A ≤ M ⇒ F (M ∧ A) ≤ FM

M ∧ A ≤ A⇒ F (M ∧ A) ≤ FA

then
F (M ∧ A) ≤ FM ∧ FA ≤ M ∧ FA

F (M ∧ A)→ M ∧ FA
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Applications - where to use costrength

Let there be a monoidal category (M,⊗, I) acting on C,D with actions
L© :M×C → C, respectively R© :M×D → D.

A pair of functors Fcst : C → C, Fstr : D → D with L©-costrength,
respectively, R©-strength can be lifted to an optic transformation.

A (mixed) optic [CEG+24]

Optic L©, R©((S,T ), (A,B)) =
∫ M∈M

C(S,M L© A)×D(M R© B,T )

can therefore be transformed into

Optic L©, R©((FcstS,Fstr T ), (FcstA,Fstr B))

by the co/strengths [BP24].
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Applications - where to use costrength

∫ M∈M
C(S,M L© A)×D(M R© B,T ) (Fcst ,Fstr )−−−−−−→

∫ M∈M
C(FcstS,Fcst(M L© A))×D(Fstr (M R© B),Fstr T ) (cst,str)−−−−−→

∫ M∈M
C(FcstS,M L© FcstA)×D(M R© Fstr B,Fstr T )
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Applications - where to use costrength

Suppose we want to compose Optic×,+((S,T ), (A,B)) and
Optic×,+((X × [X ,A], List B), (Z ,W ))
We can lift the first optic by (Costate, List) and then compose:

Optic×,+((X × [X , S], List T ), (X × [X ,A], List B))×

Optic×,+((X × [X ,A], List B), (Z ,W ))→

Optic×,+((X × [X ,S], List T ), (Z ,W )) ∼=

[X × [X ,S],Z ]× [X × [X , S] + W , List T ] ∼=

[X × [X , S],Z × List T ]× [W , List T ]
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Conclusions

Tensorial costrengths are omnipresent and very useful in functional
programming; they are not necessarily unique.
We showed that in the cartesian case tensorially costrong functors are
synonymous with copointed functors. The result can be dualized for
cocartesian categories and tensorially strong/pointed functors.
There are interesting applications for (co)strength, in particular for
optics.
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Thank you

Thank you for the attention!
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