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What is tensorial (co)strength?

Let F:C — C be a functor and ® : M x C — C an action of a monoidal
category (M, ®, 1) on the category C [Bén67, McC00, Par77].

F is said to have tensorial
costrength* if there is a natural
transformation with components
cstya: FIM®A) - MO FA.

F is said to have tensorial
strength* if there is a natural
transformation with components
strpya: MO FA— F(M® A).

*Both must satisfy coherence conditions for the action unitor and
associator.
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Coherence conditions

F(M® (N o X)) ot M F(N® X) F(loX)—=* > 16 F(X)
= lid@cst A A
F(M® N) o X) Mo (NG F(X)) F(X)
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Why is tensorial (co)strength important?

@ Because it matters where we do certain "computations” and how we
chain them
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@ It provides flexibility in programming because we can interchange
functor applications
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over data
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Why is tensorial (co)strength important?

@ Because it matters where we do certain "computations” and how we
chain them

@ It provides flexibility in programming because we can interchange
functor applications

@ It provides means to encapsulate and extract data, or rather actions
over data

@ They can be applied in conjunction with profunctor optics [CEG24]
to transform and compose them more easily
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Why is tensorial (co)strength important?

e Every endofunctor in Set has (unique!) (Set, x, 1)-strength,
M x FA — F(M x A), this is why it is “invisible” most of the time
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Why is tensorial (co)strength important?

e Every endofunctor in Set has (unique!) (Set, x, 1)-strength,
M x FA — F(M x A), this is why it is “invisible” most of the time

@ Every endofunctor in Set has (again unique!) (Set°, x,1)-costrength
F([M,A]) — [M, FA] because of the adjunction M x — - [M, —] (the
Writer comonad and Reader monad repectively) [HK11]
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Why is tensorial (co)strength important?

e Every endofunctor in Set has (unique!) (Set, x, 1)-strength,
M x FA — F(M x A), this is why it is “invisible” most of the time

@ Every endofunctor in Set has (again unique!) (Set°, x,1)-costrength
F([M,A]) — [M, FA] because of the adjunction M x — - [M, —] (the
Writer comonad and Reader monad repectively) [HK11]

@ There are more examples of monoidal products than the cartesian
product
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(Set, x, 1)-costrengths

@ The Reader monad X — [S, X] has costrengths in one-to-one
correspondence with the elements of S, so not unique
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(Set, x, 1)-costrengths

@ The Reader monad X — [S, X] has costrengths in one-to-one
correspondence with the elements of S, so not unique

@ The Costate comonad X — S x [S, X] has costrengths (not unique!)
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(Set, x, 1)-costrengths

@ The Reader monad X — [S, X] has costrengths in one-to-one
correspondence with the elements of S, so not unique

@ The Costate comonad X — S x [S, X] has costrengths (not unique!)
e Functors that have F() # () do not have (Set, x, 1)-costrength
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(Set, +, 0)-costrengths

e Filtrable functors, those which have ¢ : F(1+ —) = F—, have
costrength
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(Set, +, 0)-costrengths

e Filtrable functors, those which have ¢ : F(1+ —) = F—, have
costrength

@ The powerset functor P is such an example,
P(M+ X) — M+ P(X), these functors simply "forget" or filter the
values of type M and re-embeds the new values

Balan, Pantelimon (UNSTPB) Tensorial (Co)strength FROM 2025 7/18



(Set, +, 0)-costrengths

e Filtrable functors, those which have ¢ : F(1+ —) = F—, have
costrength

@ The powerset functor P is such an example,
P(M+ X) — M+ P(X), these functors simply "forget" or filter the
values of type M and re-embeds the new values

@ Because Set is distributive, the Writer comonad has costrength:
SX(M+X)=(Sx M)+ (SxX)—= M+ (S x X)
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Other costrengths

e Considering (End(.A), o, Id4) acting on A that is copowered then a
functor F: A — A, FX = [],cs X, has (End(.A), o, Id4) -costrength
that is a distributive law over all endofunctors
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Other costrengths

e Considering (End(.A), o, Id4) acting on A that is copowered then a
functor F: A — A, FX = [],cs X, has (End(.A), o, Id4) -costrength
that is a distributive law over all endofunctors

o Consider the endofunctor category [Set, Set].pp1 of applicative
functors [MPO08] acting via application on Set. Every
[Set, Set].pp1-costrong functor is a traversable functor by definition,
ToF - FoT [JR12]
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Our results

Theorem - Cartesian costrong-copointed isomorphism

Let (M, x,1) be a cartesian category. There is an isomorphism between
the category [M, M]cst of (M, x, 1)-costrong endofunctors on M, and
the category of copointed endofunctors [M, M] | id.
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The correspondences are as follows, we define the maps:
o M, M]est — [M, M] | ida maps (F,cst) to (F,e) where
e F(M)—= F(M x 1) %% M x F(1) = M

And V : [M, M] | idp — [M, M]cst maps a copointed (F,¢) to
(F,cst), with costrength given by

Fy,F
cst: F(M x X) (Fru )

F(M) x F(X) —228 o~ M x F(X)

where (—, —) denotes the pairing into the product.
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Examples of cartesian categories

Consider a bounded meet-semilattice, it can be modeled as a cartesian
monoidal category (C,A, T) where A< B=A — B.

A functor F : C — C with the property FA < A= FA — Ais in essence a
copointed functor. Following the previously mentioned mapping, we can
construct the costrength:

FM <M= FMAFA<MA FA
MAA<M= F(MAA)<FM

MAA<A= F(MAA)< FA

then
FIMANA) < FMAFA<MAFA

F(M A A) — M A FA
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Applications - where to use costrength

Let there be a monoidal category (M, ®, /) acting on C, D with actions
O : M xC — C, respectively ® : M x D — D.

A pair of functors Fest : C — C, Fsr : D — D with (D-costrength,
respectively, (R-strength can be lifted to an optic transformation.

A (mixed) optic [CEGT24]

MeM
Optico (5. T).(A.B) = [ C(S.MOA) x D(M®B.T)
can therefore be transformed into

Optic@,@((chtS; Fstr T), (chtAa FstrB))
by the co/strengths [BP24].
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Applications - where to use costrength

MEM (cht,Fstr)
/ C(S,M© A) x D(M ® B, T) Lerf),

(cst,str)
e

MeM
/ C(chtsa cht(M @ A)) X D(Fstr(M ® B), Fstr T)

MeM
/ C(FrstS, M © FostA) x D(M ® Fotr B, Furr T)
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Applications - where to use costrength

Suppose we want to compose Opticy 1 ((S, T), (A, B)) and
Opticy +((X x [X, A],List B),(Z, W))
We can lift the first optic by (Costate,List) and then compose:
Opticy +((X x [X,S],List T),(X x [X, A],List B))x
Opticy +((X x [X,A],List B),(Z, W)) —
Opticy +((X x [X,S],List T),(Z, W)) =
[X x[X,S],Z] x [X x [X,S]+ W,List T] =
[X x [X,S],Z x List T] x [W,List T]
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Conclusions

@ Tensorial costrengths are omnipresent and very useful in functional
programming; they are not necessarily unique.

@ We showed that in the cartesian case tensorially costrong functors are
synonymous with copointed functors. The result can be dualized for
cocartesian categories and tensorially strong/pointed functors.

@ There are interesting applications for (co)strength, in particular for
optics.

Balan, Pantelimon (UNSTPB) Tensorial (Co)strength FROM 2025 15/18



Thank you for the attention!
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