Reasoning About
Almost-Sure Termination

Rupak Majumdar

(Joint work with V.R. Sathiyanarayana)

Max Planck Institute for Software Systems

Termination, a.k.a. The Halting Problem

Given a program P, does P halt?

Algorithmically undecidable!

... But at the core of program analysis and verification
Roughly, termination = reasoning about liveness

In order to assist the checker, the progrwwaer should make assertions
about the various states that the machine can reach, These assertions may
be tabulated as in rig.2. Assertions are only made for the states when
certain partioular quantities are in control, vorresponding to the ringed
letters in the rlow diagrea, One coluan of the table is used for each such
situation of the control, Uther quantitlies are also nueded to specify the
comiition of the machine completely: in our cmse 1t 1a Sufriclent to give
r and 8. ‘The upper part of the tuble gives the various coutents of the atore
1ines in the various conditions of the machine, and reatrictions on the
quantities a, r (which we wuy call inductive variubles). The lower part
tells us which of the cunditions will be the nuext L0 occur.

The checker has to verify that the coluans corresponding to the initial
condition and the stopped condition agree with the claima that are made for
the routine as a whole, In this case the claim is thut 1I we start with
control in condition D and with n in line 29 we shall rind a quantity in
line 31 when the machine ntogn which s r (provided this is less than 0
but this condition has been gnored),

He has also to verify that each of the mssertions in the lower half of
the table is correct, In doing this the columns may be tsken in any order
and quite independently. Thus for colusn B the checier would arguse,
*bras the Flow diagrem we sce that after B the box y! = u applies, From
the upper part of the colurn for B we have u = r , Honoe v’ = r i,e,
tha entry for v i,e, for line 31 in C should be r . The other entries are
the saae as in B",

Finally the checker has to verify that the proocess comes to an end.

- Here again he should be assisted by the programaer giving a further definite
ansartion to be veriried, This may take the rfomm of a quantity which 1is
asserted to deorease contipually and vanish when ths oschine stops., To the
pure mathesaticlan it is natural to give an ordinal nusber. In this problem
the ordinal might be (n=r) we(r=-8)welk A loss highbrow form of the
swae thing would bs to give the integer 250 (n - r) + 240 (r =8) + Kk,

Teking the latter oase and the atep frou B to C there would bo a docroase
from 290 (o -r) +» 20 (r -8) + 5t 2 (n=-v) «240 (r =8) ¢+ 4. In the
stop from ¥ to B there i3 a decrease Iraa 280 (n=1x) « 240 (r - 8) + 1
020 (n=-r1)+2¥0 (re1=8)+5.

In the course of cheaking that the procesa casss to an end the tioe
fmvolved may also be estimated by arrangiug that the decreasing quantity
reprusents an upper bound to the time till the machine stopa,

Alan Turing: 'Checking a large routine’.
Talk on 24 June 1949 at the

Inaugural conference of the EDSAC

computer at the Mathematical Laboratory,
Cambridge

Safety: Invariants and assertions

Termination: Ranking functions

How do we Prove Programs Correct?

Program Logics: Reduce reasoning about
programs to validity questions in logic

"In the old days, programmers would just twiddle with programs till they seemed to work,"

says Professor Emeritus of The Art of Computer Programming Donald Knuth.

"Floyd showed that there was a way to prove programs would work."

His approach of marrying math with computer science was "a revelation to the field," Knuth says.

One of the hottest topics in computer science at the time was the language of computer programming.
Says Knuth: "There were only four good papers on the topic -- all by Floyd."

Proof Rule for Safety: Inductive Invariants

To show Bad is unreachable:

Find a certificate Inv such that:
1. Init € Inv

2. Post(lnv) € Inv
[Inv closed under the transition relation]

3. Badnilnv=0

Proof Rule for Termination: Ranks

To show P is terminating:

Find a rank U mapping
states to ordinals:

whenever s 2 t, we have

U(s) > U(t)

Proof Rule for Termination: Ranks

To show P is terminating:

Find an invariant Inv
and a rank U mapping
states to ordinals:

whenever Inv(s) and s =2 t,

we have:
U(s) > U(t)

Proof Rule for Termination: Ranks

Example: Ranking functions

Find a mapping U: X — 70
that decreases in each execution
step.
To show P is terminating: while (x > 0) {
Find an invariant Inv x —=1
and a rank mapping states to ;
ordinals:
U(x) £ x

whenever Inv(s) and s 2 t,
we have r(s) > r(t)

Soundness and Completeness

* Soundness: Whenever our proof system says something about a
program, this statement is true for the program

* Completeness: Whenever a program is safe or is terminating, the
proof system is able to prove this

Completeness is relative to the underlying logic [Cook]

Soundness

e Safety: Argue by induction that all reachable states are in Inv

e Termination: Argue by well-foundedness that there cannot be an
infinite execution

10

Completeness

» Safety: Take Inv to be the set of reachable states

e Termination: Take rank to be the number of states reachable from s

Cook: We can encode Inv and rank in the language of arithmetic

11

Fast Forward to Today....

Many groundbreaking results in formal methods and program
verification, algorithmic methods, and tools....

Are there any open problems left?

Probabilistic Programs:
Algorithms that toss coins

Turing machines + Randomness

* Why?

 Randomization can often lead to efficient algorithms

Polynomial Identity Testing: Best algorithms are randomized

e Randomization can overcome barriers

Randomization allows symmetric solutions to dining philosophers

Randomized asynchronous consensus avoids FLP impossibility

Language

* Imperative language
e Bounded nondeterministic choice

* Bounded probabilistic choice ¢, @p C,
* Toss a coin. With probability p, execute ¢, and with 1-p, execute ¢,

Almost Sure Safety and Termination

Almost sure = “Happens with probability 1” Example: Coin flipper
while (x != 0) {

X =0 @1/2 X =1,;
Almost sure safety = Safety

1/2
But: 4[x:= x:=0

Almost sure termination # Termination U 1/2

Almost-Sure Termination (AST)

* Natural probabilistic generalization of
classical termination Example: Coin flipper

* Requires probability of termination=1 while (x != 0) {
X = 0 @1/2 X =1;
}

» Complexity of AST is I17-complete
[Kaminski & Katoen 2015]. [B 1/2

* Harder than classical halting problem [Turing

1943] 1

What are proof rules for AST?

 Similar in spirit to proof rules for termination

* Find certificates of termination
* Invariants, ranks

* Hard to find, but “easy” to check

* Easy = Validity question in logic

Example: Ranking functions

Find a mapping U: X — 70

that decreases in each execution

step.
while (x > 0) {
X =1 @Z/ZX —= 2,

What are proof rules for AST?

Example: Coin flipper

while (x '= 0) {
X=@@]/2x=1;

 Similar in spirit to proof rules for termination

* Find certificates of termination }
* Invariants, ranks

1/2
* Hard to find, but “easy” to check A[x: =1 x:=0

Y

Non-probabilistic ranking functions do not work

* Easy = Validity question in logic

18

Main Theorem

A Sound and Complete proof rule for almost sure termination

This “closes” a line of research, since the early 80s, that successively found better and better sound proof rules

Outline

* A Program Logic (and why you can forget about it)
* The Rule
e Soundness

* Completeness

For non-probabilistic programs [Dijkstra 1975]

Program Logic: Weakest Precondition Calculus

_ This is what the calculus
Predicate over defines syntactically

program states /

For a predicate ¢ and a program Prog, the function Wp. Prog. ¢ outputs the
weakest condition 1) such that the execution of Prog from 1y ends in .

/ |

_ _ Prog terminates
“Most general" predicate, i.e., g_
largest set of states in @

21

For non-probabilistic programs [Dijkstra 1975]

Program Logic: Weakest Precondition Calculus

For a predicate ¢ and a program Prog, the function wWp. Prog. ¢ outputs
the weakest condition 1) such that the execution of Prog from Y ends in .

Prog
O’\——\/O

Example

while (x !'= 0) {
Prog: = X —= 1;
I3

wp.Prog. T =x =0

For probabilistic programs [Kozen 1985]

Probabilities: Weakest Pre-Expectation Calculus

Mapping from program Generalizes boolean
>0)
states to IR predicates

N

For an expectation | and a program Prog, the calculus Wp. Prog. f outputs the
expectation™ g such that g assigns to each state 0 the expected value off after
the execution of Prog from o.

T~

Gives a probability
___— sub-distribution over the state space

Because PT0g may not
terminate with
probability 1

*Only when there isn’t nondeterminism!

For probabilistic programs [Kozen 1985]

Probabilities: Weakest Pre-Expectation Calculus

For an expectation f and a program Prog, the calculus wp. Prog. f outputs
the expectation* g such that g assigns to each state g the expected value of f
after the execution of Prog from 0.

s O o Example
ng while (x !'= 0) {
Prog: = X=0@7,px=1;
}
(wp.Prog.f)(e) wp. Prog.x = 0

= p1f(01) + p2f (02) + -
p1 + P2 + p3 < 1lispossible!

Loop Invariants in this Notation

For the loop prog = while(@){body; }, the predicate InV is an invariant of
prog if its truth doesn’t change after an execution of body.

e

In our notation: wWp. body. [Inv] = [@ A Inv]

/ bOdy Inv\/

The brackets || around Inv Invv body Invy
makes a Boolean characteristic

function into an expectation

25

Loop Invariants

Example
For the loop hile (x I= 0) 4
. while (x !=
prog = while(p){body;}, o =0 N
the predicate INV is an invariant Prog: = \ 172 '

of prog if its truth doesn’t
change after an execution of

body. Invi=x=0vx=1

26

Goal: AST Proof Rule

Programs without loops always terminate

Our goal is to show a loop terminates almost surely from all states
satisfying the loop invariant

i.e., for a loop

Prog = while(p){body}
with a loop invariant Inv, that

[Inv] < wp. Prog. 1

27

Outline

* A Program Logic (and why you can forget about it)

‘The Rule

 Soundness

* Completeness

28

Let’s build the proof rule...

...using 3 simple examples of loops

Coin flipper Symmetric 1DRW
while (x '= 0) { while (x !'= 0) {
X =0 @7, x=1; X++ D7/ X—i
} s
AST AST

Asymmetric 1DRW

while (x '= 0) {
X++ @1/3 X—==3
I3

Not AST

29

Why is the coin flipper AST?

Coin flipper

while (x '= 0) {
X=@@1/2x=1;
¥

Each state is one loop iteration
away from termination

[Mclver & Morgan 2005]

Why is the coin flipper AST?

Use an existing proof rule for this!

Coin flipper

Look for a bounded integer-valued mapping U while (x 1= 0) {

and a positive € such that body reduces U X =0 @z x = 1;
with probability = € 1
1 X £ O Each state is one loop iteration
U (X) — { 0 x =0 away from termination

Generalize ranks: Ranks decrease with positive probability in each step

Formal Proof Rule
(Variant rule of Mclver and Morgan, 2005)

Coin flipper
To prove that [Inv] < wp. Prog. 1, find an integer valued
expectation U and two positive values € and H such that
e InVAp =>H>U>0and—@p = U =0

while (x != 0) {
X=@@J/2X=1;
¥

1 x#0

e e[InvAU =n] <wp.body.|U < n] foralln>
U =2ty x =0

U is bounded by H
and 0 at terminal
states

€ minimum probability of
reduction

Sound for AST Complete for finite-state programs!

Variant Rule is incomplete!

Symmetric 1DRW

while (x !'= 0) {
X++ @77 X==;
}

AST, but cannot be proved using
only bounded variants!

To prove that [Inv] = wp. Prog. 1, find
an integer valued expectation U and
two positive values € and H such that

e iInvAp=>H>U>0and—p =U =0
e e[lnvA U =n] <wp.body.|U < n]foralln

Observation: The candidate U (x) = x is unbounded!

Maybe we make the variant unbounded?

Symmetric 1DRW

while (x !'= 0) {
X++ @77 X==;
}

AST, but cannot be proved using
only bounded variants!

To prove that [Inv] = wp. Prog. 1, find
an integer valued expectation U and
two positive values € ard-H-such that

e InVvAp =>H>U>0and—p = U =0
e e[lnvA U =n] <wp.body.|U < n]foralln

Observation: The candidate U (x) = x is unbounded!

Unbounded variants aren’t sound

To prove that [Inv] = wp. Prog. 1, find
an integer valued expectation U and
two positive values € ard-H-such that

Asymmetric 1DRW

while (x = 0) {

X++ D3 X=i e InVAp =>H>U>0and=p=>U=0
+ e ¢[InvAU =n] <wp.body.[U < n]foralln

Not AST, but the same
unbounded candidate exists Observation: The candidate U(Xx) = x is unbounded!

35

Look deeper into the Symmetric 1DRW

whilehixe!'£x0'x Q)<£t M) {

X++ @1-?-/2@(]—/?; X—=}
L

Observation: The probability of hitting the wall
grows smaller the further away the wall is!

W A
) 1/2 ‘ 1/2:

0 1 2 n—-1 n n+1 M

The candidate U(x) = x is now bounded! — Walled 1DRW is terminating

36

Look deeper into the Symmetric 1DRW

More precisely, forany 0 < € < 1, while (x 1= 0 A X <= M) {
there is an M far away X++ D7/ X—;
such that probability of hitting the wall b

at M before hitting \}‘:{/ is< €

W A
) 1/2 ‘ 1/2:

0 1 2 n—-1 n n+1 M

The candidate U(x) = x is now bounded! — Walled 1DRW is terminating

37

Look deeper into the Symmetric 1DRW

More precisely, forany 0 < € < 1, while (X '= 0 A x <= M) {
there is an M far away X++ @]/3 X—=;
such that probability of hitting the wall I3

at M before hitting \Xg/ is< €

Not true for the ﬂ.
W Asymmetric 1DRW 1/3 ‘

: } 2/3,

0 1 2 n—-1 n n+1 M

The candidate U(x) = x is now bounded! — Walled 1DRW is terminating

38

Supermartingales:

A Notion of Boundedness over Time

Supermartingales: Mappings from states to
real numbers that don’t increase in

expectation:

E[V(x)|x] <V(x)

Probability of increasing for a non-negative

supermartingale from a low value L to a high

value H is bounded above by L /H

Example: Symmetric Random Walk

while (x !'= 0) {
x++ @ 7,/7 X==;
}

V(x) =x 1s a supermartingale

Symmetric 1IDRW: Supermartingale

More precisely, forany 0 < € < 1, - _ ,
Probability of increasing V(x) = x

there is an M far awa
Y from a low value L to a high value

such that probability of hitting the wall
H is bounded above by L /H

at M before hitting \}g/ is< €

W A
é) 1/2 ‘ 1/2‘

0 1 2 n—1 n n+1 M
V() =0 Vix)=x 1s a Probability of reaching
supermartingale wall < n/M

Note:
U(x) = x is bounded when V(x) is bounded We say U is compatible with V

Coin flipper

Summarising e 0 e x = 1

}
* Bounded variants imply AST Asymmetric 1DRW
* Unbounded variants do not imply AST while (x !'= 0) {
X++ @]/3 X—,
s
* What if we have a supermartingale Symmetric 1DRW
and a compatible variant? while (x '= 0) {
* We get AST! X++ @ /7 X—=;
s

U(x) = x isan unbounded variant
V(x) = x is asupermartingale

U is bounded when V is bounded 4

Proof Rule
To prove that [Inv] < wp. Prog. 1,
find an integer valued expectation U and a real valued expectation V
such that
elInVAp =>U>0AV >0, V and U are zero only at

terminal states
e qpp =>U=0AV =0,

eV > wp. body_ ([lnv] V), The Supermartingale property

e Forallr € R™Y, there exists an €,- and a H,- such that

Variant is compatible with
e V<=r=U<H,, supermartingale

e e [InvAU =nAV <r] <wp.body.[U <n]foralln Variant decreases with
positive probability ~ *2

Proof Rule
To prove that [Inv] < wp. Prog. 1,
find an integer valued expectation U and a real valued expectation V

such that

elInVAp =>U>0AV >0, Symmetric 1DRW
e =>U=0AV =0, while (x '= @) {
X = 0 @1/2 x = 1;
}

e V > wp.body. ([Inv]V),

V(x) = x
e Forallr € R™Y, there exists an €,- and a H,- such that

U(x) = x

e V<r=U<H,,

e e, [InvAU =nAV <r] <wp.body.|U < n] foralln

43

Outline

* A Program Logic (and why you can forget about it)

e The Rule

‘Soundness

* Completeness

44

Proof of Soundness

Fact #1 The probability of reaching [V = 7] Inv

— 4

shrinkstoQasr — o -

The probability of executions for

Fact#2 Compatibility of Variant U implies
that while(p AV < r){body}
is AST

Pr|Blue] =0

Drunken Men vs Drunken Birds

Symmetric Random Walks in d Dimensions

- Symmetric d-Dimensional Random Walk: Over points in Z4

- In each step, pick one of 2d neighbors u.a.r.

Theorem: From any starting point:
Pr[Reaching 0] =1 ifd=1,2 and < 1 if d>2

V(x, y) = sart(log(x* + y?))

Outline

* A Program Logic (and why you can forget about it)

e The Rule

 Soundness

‘Completeness

47

49

How do we prove completeness?

Given: An invariant Inv such that the loop
while(@){body} is AST from every state in Inv

To construct: a supermartingale V and a compatible
variant U that is bounded when I/ is bounded

Given: All states terminate with prob 1

A transition system view of the loop

— emm mm—
——__
-
-
-
-

>

-~ -
7 /’
‘ ‘ ‘ ‘ ‘ ‘ ‘ -
[BN)
<

#1: Each transition step is a #2: All terminal states are
full execution of body lumped together

Meaning branching can be unbounded,
but probability weights sum to 1

51

Given: All states terminate with prob 1

Building the variant

Let’s start with Mclver & Morgan’s variant rule from 2005

To prove that [I nV] < wWp. PT'Og. 1, find an integer valued Complete for finite-state programs!
expectation U and two positive values € and H such that

A function that assigns to 0 the smallest
e InvAp = H>U>0and—p = U =0

e e[InvAU =n] < wp.body. [U < n]foralln number of executions of body to get non-zero

probability of termination

Define the variant U: state 0 —length of
shortest path from 0 to =@

For finite graphs, U is trivially bounded

Given: All states terminate with prob 1

Building the variant

What if the state space in unbounded?

— o
—
—__
-
f—
-

-
- —
7 /’
‘ ‘ ‘ ‘ ‘ ‘ ‘ -
see
<

Define the variant U: state 0 —length of

shortest path from g to .
P P From now on, assume U is unbounded

U can be unbounded (e.g., 1DRW)

53

Given: All states terminate with prob 1

Building the supermartingale

Enumeration

Step 1: Arbitrarily enumerate all nonterminal states.

All terminal states are assigned 0

54

Given: All states terminate with prob 1

Building the supermartingale

For this enumeration, construct a bounded supermartingale

Step 2: For any M, the mapping I/;: 1 > Probability of reaching
{M,M + 1, ... } before reaching 0 is a bounded martingale

7’

OO0 - &

L SN

All terminal states are assigned 0

Vmu(m)£pVy(n—1) +(1 —p)Vy(n + 1)

55

Given: All states terminate with prob 1

Building the supermartingale

For this enumeration, construct a bounded supermartingale

Step 2: For any M, the mapping I/;: 1 > Probability of reaching
{M,M + 1, ... } before reaching 0 is a bounded martingale

— — —
—-____—
—
—
—
’—
-

) OQ - G- -0 ©-
\ —0

Wimz2pV,yin—1)+0 —-p)Vy(n+1) V(M) =1

Problem: Compatibility: Every state satisfies V,;,(M) < 1, but U is unbounded

56

Given: All states terminate with prob 1

Building the supermartingale

For this enumeration, construct a bounded supermartingale

We have:
Vy: n —Probability of reaching {M, M + 1, ... } before reaching O

U:n » length of shortest pathto O

Problem: Compatibility: Every state satisfies Vy;(M) < 1, but U is unbounded

Can we define V = ZVM

This would diverge

Given: All states terminate with prob 1

Building the supermartingale V. in Probabilty of reaching

Defining V by diagonalization {M,M + 1, ...} before reaching 0

Step 3: Define the sequence (1n;);en such that 1; is the
smallest number such that V, (j) < 1/2" forall j < i.

(O—0Q. - CrOs

—

-~

Claim: If the sequence exists, then), Vn, converges

58

Given: All states terminate with prob 1

Building the supermartingale V. in Probabilty of reaching

Showing the sequence exists {M,M + 1, ...} before reaching 0

Step 4 [Left leaning lemma]: For each fixed n, the probability
of reaching {M, M+1, ...} goesto0as M — oo

Fact: foreveryp <1,
there is a finite collection of terminal (finite) runs from n of probability weight p
These runs only see a finite part of the state space 59

Given: All states terminate with prob 1

Building the supermartingale V. in Probabilty of reaching

Showing the sequence exists {M,M + 1, ...} before reaching 0

Step 4 [Left leaning lemma]: For each fixed n, the probability
of reaching {M, M+1, ...} goesto0as M — oo

Fact: foreveryp<1, <1-p
there is a finite collection of terminal (finite)

runs from n of probability weight p As p increases, M gets further away
60

Given: All states terminate with prob 1

Building the supermartingale V. in Probabilty of reaching

Defining V by diagonalization {M,M + 1, ...} before reaching 0

Step 3: Define the sequence (1;);en such that 1; is the
smallest number such that 1, (j) < 1/2" forall j < i

— =

e

Claim: If the sequence exists, |then) V,, converges

The left leaning lemma implies the sequence exists 6

Given: All states terminate with prob 1

Building the supermartingale V. in Probabilty of reaching

M,M+ 1, ...} before reaching O
Step 5: Prove), V., converges t } g

Define the sequence (1;);en such that
n; is the smallest number such that

Fix N, vary V. in ZVni(N) Vo, () < 1/2% forallj < i

e

“Small” n;

“Medium” 1n; “Large” n;

| B 1

N=n =V, N)=1 i<N<n =V, (N)<1 NSi:Vni(N)SZ
2

Building the supermartingale

Step 5: Prove), If,. converges

Define the sequence (1;);en such that

Given: All states terminate with prob 1

Vs n »Probability of reaching
{M,M + 1, ...} before reaching 0

i

- |

Nn; is the smallest number such that

Vo, () < 1/2 forallj < i nl

Fix N, vary V. in Zan (N)

“Small” n; N > n; = Vni(N) — 1

“Medium” Nn;

i <N<n=V,(N)<1

1
“Large” N; N<i=V,[N)< o

n2 ni

(ZVh)(N) SMy+ 3 - <My +1

J2IN

Given: All states terminate with prob 1

Building the supermartingale V. in Probabilty of reaching

Defining an unbounded V by diagonalization {M,M + 1, ... } before reaching 0

Define the sequence (1;);en such that
n; is the smallest number such that

Step 6: Define the supermartingale Vin = ' 1;,.(n) Vo, () < 1/2" forallj < i

i

™8

Claim: V is well-defined, increasing, [V < r] finite for each r

I

Given: All states terminate with prob 1

Summary

Vy: m —Probability of reaching
{M,M + 1, ...} before reaching O

1. Vis well-defined
Define the sequence (1n;);en such that 2. Vis asupermartingale
n; is the smallest number such that 3. [V = r]is finite for each r

. l . . : :

Vo, () < 1/2 forallj < i 4. U is a variant

5. U is compatible with V
Define the supermartingale V:in = 3 V,.(n)

i=1

Define the variant U: state o —length
of shortest path from o to =@

Outline

* A Program Logic (and why you can forget about it)
 The Rule
e Soundness

 Completeness

‘ Coffee

66

A Sound and Complete Proof Rule for AST

To prove that [Inv] < wp. Prog. 1,
find an integer valued expectation U and a real valued expectation V
such that

eInVAp =>U>0AV >0,
e V = wp.body. (|Inv]V),

e ForallT € R™Y, there exists an €. and a H.. such that
o/ <r—= U < Hr,
ec. [InvVAU =nAV <r| <wp.body.|U < n| foralln

67

Where do we go next?

* Applications: Proving AST for randomized protocols
* Research question: How can you add fairness?

* Theory: Proving AST for infinite-branching nondeterminism
e Research question: How can you combine ordinals and supermartingales?

* Tools: First steps based on Caesar
* Research question: Automation

Thank You!

