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Termination, a.k.a. The Halting Problem

Given a program P, does P halt?

Algorithmically undecidable!

… But at the core of program analysis and verification
Roughly, termination ≈ reasoning about liveness
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Safety: Invariants and assertions

Termination: Ranking functions

Alan Turing: 'Checking a large routine’. 
Talk on 24 June 1949 at the 
Inaugural conference of the EDSAC 
computer at the Mathematical Laboratory, 
Cambridge
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How do we Prove Programs Correct?

Program Logics: Reduce reasoning about 
programs to validity questions in logic

"In the old days, programmers would just twiddle with programs till they seemed to work," 
says Professor Emeritus of The Art of Computer Programming Donald Knuth. 
"Floyd showed that there was a way to prove programs would work." 
His approach of marrying math with computer science was "a revelation to the field," Knuth says.
One of the hottest topics in computer science at the time was the language of computer programming. 
Says Knuth: "There were only four good papers on the topic -- all by Floyd."
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Proof Rule for Safety: Inductive Invariants

Init

Bad

To show Bad is unreachable:

Find a certificate Inv such that:

1. Init ⊆ Inv

2. Post(Inv) ⊆ Inv
[Inv closed under the transition relation]

3.    Bad ∩ Inv = ∅
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Proof Rule for Termination: Ranks

Init

To show P is terminating:

Find a rank U mapping 
states to ordinals:

whenever s à t, we have

U(s) > U(t)
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Proof Rule for Termination: Ranks

Init

To show P is terminating:

Find an invariant Inv
and a rank U mapping 
states to ordinals:

whenever Inv(s) and s à t, 
we have:
U(s) > U(t)
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Proof Rule for Termination: Ranks

To show P is terminating:
Find an invariant Inv
and a rank mapping states to 
ordinals:

whenever Inv(s) and s à t, 
we have r(s) > r(t)

Init

Example: Ranking functions

Find a mapping !: Σ → ℤ&'
that decreases in each execution 

step.

while (x > 0) {
x -= 1

}

!()) ≜ )
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Soundness and Completeness

• Soundness: Whenever our proof system says something about a 
program, this statement is true for the program

• Completeness: Whenever a program is safe or is terminating, the 
proof system is able to prove this

Completeness is relative to the underlying logic [Cook]

9



Soundness

• Safety: Argue by induction that all reachable states are in Inv

• Termination: Argue by well-foundedness that there cannot be an 
infinite execution
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Completeness

• Safety: Take Inv to be the set of reachable states

• Termination: Take rank to be the number of states reachable from s

Cook: We can encode Inv and rank in the language of arithmetic
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Fast Forward to Today….

Many groundbreaking results in formal methods and program 
verification, algorithmic methods, and tools….

Are there any open problems left?
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Probabilistic Programs: 
Algorithms that toss coins
Turing machines + Randomness

• Why? 
• Randomization can often lead to efficient algorithms

• Randomization can overcome barriers

Polynomial Identity Testing: Best algorithms are randomized

Randomization allows symmetric solutions to dining philosophers

Randomized asynchronous consensus avoids FLP impossibility
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Language

• Imperative language

• Bounded nondeterministic choice

• Bounded probabilistic choice c1 ⊕p c2
• Toss a coin. With probability p, execute c1 and with 1-p, execute c2
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Almost Sure Safety and Termination

Almost sure = “Happens with probability 1”

Almost sure safety = Safety

But:
Almost sure termination ≠ Termination

Example: Coin flipper

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

%: = 1 %: = 0
⁄1 2

⁄1 2
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Almost-Sure Termination (!"#)

• Natural probabilistic generalization of 
classical termination
• Requires probability of termination= 1

• Complexity of !"# is Π'(-complete 
[Kaminski & Katoen 2015].
• Harder than classical halting problem [Turing 

1943]

Example: Coin flipper

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

,: = 1 ,: = 0
⁄1 2

⁄1 2
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What are proof rules for !"#?

• Similar in spirit to proof rules for termination

• Find certificates of termination
• Invariants, ranks

• Hard to find, but “easy” to check

• Easy = Validity question in logic

Example: Ranking functions

Find a mapping $: Σ → ℤ)*
that decreases in each execution 

step.

while (x > 0) {
x -= 1 ⊕1/2 x -= 2;

}

$(0) ≜ 0
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What are proof rules for !"#?

• Similar in spirit to proof rules for termination

• Find certificates of termination
• Invariants, ranks

• Hard to find, but “easy” to check

• Easy = Validity question in logic

Example: Coin flipper

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

(: = 1 (: = 0
⁄1 2

⁄1 2

Non-probabilistic ranking functions do not work
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Main Theorem

A Sound and Complete proof rule for almost sure termination

This “closes” a line of research, since the early 80s, that successively found better and better sound proof rules
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Outline

• A Program Logic (and why you can forget about it)

• The Rule

• Soundness

• Completeness
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Program Logic: Weakest Precondition Calculus

For a predicate! and a program "#$%, the function &'. "#$%. ! outputs the 
weakest condition) such that the execution of "#$% from ) ends in!.

Predicate over  
program states

This is what the calculus 
defines syntactically

“Most general" predicate, i.e., 
largest set of states

For non-probabilistic programs [Dijkstra 1975]

"#$% terminates 
in !
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Program Logic: Weakest Precondition Calculus

For a predicate! and a program "#$%, the function &'. "#$%. ! outputs 
the weakest condition) such that the execution of "#$% from ) ends in!.

For non-probabilistic programs [Dijkstra 1975]

"#$% !
)

"#$%

"#$%

"#$%

"#$%

while (x != 0) {
x -= 1;

}
"#$%:=

&'. "#$%. ⊤ = - ≥ 0

Example
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Probabilities: Weakest Pre-Expectation Calculus
For probabilistic programs [Kozen 1985]

For an expectation ! and a program "#$%, the calculus &'. "#$%. ! outputs the 
expectation* % such that % assigns to each state ) the expected value of ! after 

the execution of "#$% from ).

Generalizes boolean
predicates

Gives a probability 
sub-distribution over the state spaceBecause "#$%may not 

terminate with 
probability 1

*Only when there isn’t nondeterminism!

Mapping from program 
states to ℝ+,
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Probabilities: Weakest Pre-Expectation Calculus
For probabilistic programs [Kozen 1985]

For an expectation ! and a program "#$%, the calculus &'. "#$%. ! outputs 
the expectation* % such that % assigns to each state ) the expected value of !

after the execution of "#$% from ).

"#$%

(&'. "#$%. !)())
= -.!().) + -0!()0) +⋯

).

)0

⋮

-.
-0

-3)

-. + -0 + -3 < 1 is possible!

-6
> 0 while (x != 0) {

x = 0 ⊕1/2 x = 1;
}

"#$%:=

&'. "#$%. = = 0

Example
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Loop Invariants in this Notation

For the loop !"#$ = &ℎ()*(,){/#01; }, the predicate 456 is an invariant of 
!"#$ if its truth doesn’t change after an execution of /#01.

In our notation:78. /#01. [456] ≥ [, ∧ 456]

456✓

456✓

456✓

/#01

/#01The brackets [] around 456
makes a Boolean characteristic 

function into an expectation
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Loop Invariants

For the loop
!"#$ = &ℎ()*(,){/#01; }, 
the predicate 456 is an invariant 

of !"#$ if its truth doesn’t 
change after an execution of 

/#01.

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}
;"#$:=

Example

456: = = = 0 ∨ = = 1
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Goal: AST Proof Rule

i.e., for a loop
!"#$ = &ℎ()*(,){/#01}

with a loop invariant 345, that

[345] ≤ :;. !"#$. 1

Programs without loops always terminate

Our goal is to show a loop terminates almost surely from all states
satisfying the loop invariant
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Outline

• A Program Logic (and why you can forget about it)

• The Rule

• Soundness

• Completeness
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Let’s build the proof rule…
…using 3 simple examples of loops

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

while (x != 0) {
x++ ⊕1/2 x--;

}

while (x != 0) {
x++ ⊕1/3 x--;

}

Symmetric 1DRW Asymmetric 1DRWCoin flipper

&'( &'( Not &'(
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Why is the coin flipper !"#?

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

Coin flipper

Each state is one loop iteration 
away from termination
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Why is the coin flipper !"#?
Use an existing proof rule for this!

Each state is one loop iteration 
away from termination

[McIver & Morgan 2005]

$(&) ≜ { 1 & ≠ 0
0 & = 0

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

Coin flipper

Look for a bounded integer-valued mapping $
and a positive 1 such that 2345 reduces $
with probability ≥ 1

Generalize ranks: Ranks decrease with positive probability in each step
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Formal Proof Rule
(Variant rule of McIver and Morgan, 2005)

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

Coin flipper

%(') ≜ {1 ' ≠ 0
0 ' = 0

To prove that [/01] ≤ 45. 789:. 1, find an integer valued 
expectation % and two positive values ; and < such that
• /01 ∧ ? ⟹ < > % > 0 and ¬? ⟹ % = 0
• ;[/01 ∧ % = C] ≤ 45. D9EF. [% < C] for all C
% is bounded by H 
and 0 at terminal 

states
; minimum probability of 

reduction

Sound for HIJ Complete for finite-state programs!
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Variant Rule is incomplete!

while (x != 0) {
x++ ⊕1/2 x--;

}

Symmetric 1DRW

%&', but cannot be proved using 
only bounded variants! Observation: The candidate ((*) = * is unbounded!

To prove that [./0] ≥ 34. 6789. 1, find 
an integer valued expectation ( and 

two positive values : and ; such that

• ./0 ∧ > ⟹ ; > ( > 0 and ¬> ⟹ ( = 0
• :[./0 ∧ ( = C] ≤ 34. E8FG. [( < C] for all C
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Maybe we make the variant unbounded?

while (x != 0) {
x++ ⊕1/2 x--;

}

Symmetric 1DRW

%&', but cannot be proved using 
only bounded variants! Observation: The candidate ((*) = * is unbounded!

To prove that [./0] ≥ 34. 6789. 1, find 
an integer valued expectation ( and 

two positive values : and ; such that

• ./0 ∧ > ⟹ ; > ( > 0 and ¬> ⟹ ( = 0
• :[./0 ∧ ( = C] ≤ 34. E8FG. [( < C] for all C
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Unbounded variants aren’t sound

Asymmetric 1DRW

Not !"#, but the same 
unbounded candidate exists

while (x != 0) {
x++ ⊕1/3 x--;

}

Observation: The candidate ((*) = * is unbounded!

To prove that [./0] ≥ 34. 6789. 1, find 
an integer valued expectation ( and 

two positive values : and ; such that

• ./0 ∧ > ⟹ ; > ( > 0 and ¬> ⟹ ( = 0
• :[./0 ∧ ( = C] ≤ 34. E8FG. [( < C] for all C
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Look deeper into the Symmetric 1DRW

0 1 2 $ − 1 $ $ + 1

⁄1 2 ⁄1 2

Observation: The probability of hitting the wall 
grows smaller the further away the wall is!

while (x != 0 ∧ x <= M) {
x++ ⊕1/2 x--;

}

while (x != 0) {
x++ ⊕1/2 x--;

}

⟹Walled 1DRW is terminatingThe candidate ,(.) = . is now bounded!
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Look deeper into the Symmetric 1DRW

0 1 2 $ − 1 $ $ + 1

⁄1 2 ⁄1 2

while (x != 0 ∧ x <= M) {
x++ ⊕1/2 x--;

}

⟹Walled 1DRW is terminatingThe candidate ,(.) = . is now bounded!

More precisely, for any 0 < 2 < 1, 
there is an 3 far away

such that probability of hitting the wall 
at 3 before hitting         is < 2
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Look deeper into the Symmetric 1DRW

0 1 2 $ − 1 $ $ + 1

⁄1 3 ⁄2 3

while (x != 0 ∧ x <= M) {
x++ ⊕1/3 x--;

}

⟹Walled 1DRW is terminatingThe candidate ,(.) = . is now bounded!

More precisely, for any 0 < 2 < 1, 
there is an 3 far away

such that probability of hitting the wall 
at 3 before hitting         is < 2

Not true for the 
Asymmetric 1DRW
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Supermartingales: 
A Notion of Boundedness over Time

Supermartingales: Mappings from states to
real numbers that don’t increase in 

expectation:

! " #$ # ≤ "(#)

Probability of increasing for a non-negative 
supermartingale from a low value ( to a high 

value ) is bounded above by ⁄( )

Example: Symmetric Random Walk

"(#) = # is a supermartingale

while (x != 0) {
x++ ⊕1/2 x--;

}
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Symmetric 1DRW: Supermartingale

0 1 2 $ − 1 $ $ + 1

⁄1 2 ⁄1 2

Note:
,(.) = . is bounded when V(x) is bounded

More precisely, for any 0 < 2 < 1, 
there is an 3 far away

such that probability of hitting the wall 
at 3 before hitting         is < 2

4(0) = 0 4(.) = . is a 
supermartingale

Probability of increasing V(x) = x
from a low value 5 to a high value 
6 is bounded above by ⁄5 6

Probability of reaching 
wall < $/3

We say U is compatible with V 40



Summarising

Symmetric 1DRW

!(#) = # is a supermartingale

&(#) = # is an unbounded variant

while (x != 0) {
x++ ⊕1/2 x--;

}

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

Coin flipper

& is bounded when ! is bounded

while (x != 0) {
x++ ⊕1/3 x--;

}

• Bounded variants imply AST
• Unbounded variants do not imply AST

• What if we have a supermartingale
and a compatible variant?
• We get AST!

Asymmetric 1DRW
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Proof Rule
To prove that ["#$] ≤ '(. *+,-. 1, 

find an integer valued expectation / and a real valued expectation 0
such that
• "#$ ∧ 3 ⟹ / > 0 ∧ 0 > 0 ,

• ¬3 ⟹ / = 0 ∧ 0 = 0,

• 0 ≥ '(. :,;<. (["#$]0),

• For all + ∈ ℝAB, there exists an CD and a ED such that

• 0 ≤ + ⟹ / ≤ ED,
• CD["#$ ∧ / = F ∧ 0 ≤ +] ≤ '(. :,;<. [/ < F] for all F

0 and / are zero only at 
terminal states

The Supermartingale property

Variant is compatible with 
supermartingale

Variant decreases with
positive probability 42



Proof Rule
To prove that ["#$] ≤ '(. *+,-. 1, 

find an integer valued expectation / and a real valued expectation 0
such that
• "#$ ∧ 3 ⟹ / > 0 ∧ 0 > 0 ,

• ¬3 ⟹ / = 0 ∧ 0 = 0,

• 0 ≥ '(. :,;<. (["#$]0),

• For all + ∈ ℝAB, there exists an CD and a ED such that

• 0 ≤ + ⟹ / ≤ ED,
• CD["#$ ∧ / = F ∧ 0 ≤ +] ≤ '(. :,;<. [/ < F] for all F

Symmetric 1DRW

while (x != 0) {
x = 0 ⊕1/2 x = 1;

}

V(x) = x

U(x) = x

43



Outline

• A Program Logic (and why you can forget about it)

• The Rule

• Soundness

• Completeness
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Proof of Soundness
Inv

! ≤ #1 ! ≤ #2 ! ≤ #3

The probability of reaching [! ≥ #]
shrinks to 0 as # → ∞

Fact #1

The probability of executions for 
which ! → ∞ is 0 -#[Green] = 0

Compatibility of Variant / implies 
that 0ℎ234(6 ∧ ! ≤ #){:;<=}

is ?@A

Fact #2

-#[Blue] = 0
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Drunken Men vs Drunken Birds

Symmetric Random Walks in d Dimensions

- Symmetric d-Dimensional Random Walk: Over points in ℤd

- In each step, pick one of 2d neighbors u.a.r.

Theorem: From any starting point: 
Pr[Reaching 0] = 1 if d=1,2 and < 1 if d>2

V(x, y) = sqrt(log(x2 + y2))
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Outline

• A Program Logic (and why you can forget about it)

• The Rule

• Soundness

• Completeness
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How do we prove completeness?

Given: An invariant !"# such that the loop
$ℎ&'((*){-./0} is 234 from every state in !"#

To construct: a supermartingale 5 and a compatible
variant 6 that is bounded when 5 is bounded
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A transition system view of the loop

#1: Each transition step is a 
full execution of !"#$

Meaning branching can be unbounded, 
but probability weights sum to 1

#2: All terminal states are 
lumped together

¬% … …

Given: All states terminate with prob 1
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Building the variant
Let’s start with McIver & Morgan’s variant rule from 2005

Complete for finite-state programs!

A function that assigns to ! the smallest 
number of executions of "#$% to get non-zero 

probability of termination

To prove that ['()] ≤ ,-. /0#1. 1, find an integer valued 
expectation 3 and two positive values 4 and 5 such that

• '() ∧ 8 ⟹ 5 > 3 > 0 and ¬8 ⟹ 3 = 0
• 4['() ∧ 3 = >] ≤ ,-. "#$%. [3 < >] for all >

Define the variant 3: state ! ↦length of 
shortest path from ! to ¬8

For finite graphs, U is trivially bounded

¬B …

Given: All states terminate with prob 1
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Building the variant
What if the state space in unbounded?

Define the variant !: state # ↦length of 
shortest path from # to ¬&

U can be unbounded (e.g., 1DRW)

¬' … …

From now on, assume! is unbounded

Given: All states terminate with prob 1
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Building the supermartingale
Enumeration

Step 1: Arbitrarily enumerate all nonterminal states.

All terminal states are assigned 0

0 1 2 n-1 n n+1 M M+1… ……

Given: All states terminate with prob 1

54



Building the supermartingale
For this enumeration, construct a bounded supermartingale

All terminal states are assigned 0

0 1 2 n-1 n n+1 M M+1… ……

Step 2: For any", the mapping #$: & ↦Probability of reaching 
{"," + 1,… } before reaching 0 is a bounded martingale

Given: All states terminate with prob 1

#$(&)≜1#$(& − 1)+(1 − 1)#$(& + 1)

p 1-p

#$(") = 1
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Building the supermartingale
For this enumeration, construct a bounded supermartingale

0 1 2 n-1 n n+1 M M+1… ……

Step 2: For any!, the mapping "#: % ↦Probability of reaching 
{!,! + 1,… } before reaching 0 is a bounded martingale

Given: All states terminate with prob 1

"#(%)≜0"#(% − 1)+(1 − 0)"#(% + 1)

p 1-p

"#(!) = 1

Problem: Compatibility: Every state satisfies "# ! ≤ 1, but U is unbounded  
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Building the supermartingale
For this enumeration, construct a bounded supermartingale

We have:
!": $ ↦Probability of reaching {',' + 1,… } before reaching 0

U: $ ↦ length of shortest path to 0

Given: All states terminate with prob 1

Problem: Compatibility: Every state satisfies !" ' ≤ 1, but U is unbounded  

Can we define V = ∑!"
This would diverge
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Building the supermartingale
Defining V by diagonalization

0 1 2 i-1 i i+1 M M+1… ……

Given: All states terminate with prob 1

p 1-p

Step 3: Define the sequence ("#)#∈ℕ such that "# is the 
smallest number such that '()(*) ≤ 1/2# for all * ≤ /.

'0: " ↦Probability of reaching 
{4,4 + 1,… } before reaching 0

≤ 9
:;

Claim: If the sequence exists, then ∑'() converges
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Building the supermartingale
Showing the sequence exists

0 1 2 n-1 n n+1 M M+1… ……

Given: All states terminate with prob 1

Step 4 [Left leaning lemma]: For each fixed n, the probability 
of reaching {M, M+1, …} goes to 0 as M → ∞

#$: & ↦Probability of reaching 
{),) + 1,… } before reaching 0

Fact: for every p < 1, 
there is a finite collection of terminal (finite) runs from n of probability weight p

These runs only see a finite part of the state space 59



Building the supermartingale
Showing the sequence exists

0 1 2 n-1 n n+1 M M+1… ……

Given: All states terminate with prob 1

Step 4 [Left leaning lemma]: For each fixed n, the probability 
of reaching {M, M+1, …} goes to 0 as M → ∞

#$: & ↦Probability of reaching 
{),) + 1,… } before reaching 0

As p increases, M gets further away

≤ 1 − 1Fact: for every p < 1, 
there is a finite collection of terminal (finite) 

runs from n of probability weight p
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Building the supermartingale
Defining V by diagonalization

0 1 2 i-1 i i+1 M M+1… ……

Given: All states terminate with prob 1

p 1-p

Step 3: Define the sequence ("#)#∈ℕ such that "# is the 
smallest number such that '()(*) ≤ 1/2# for all * ≤ /

'0: " ↦Probability of reaching 
{4,4 + 1,… } before reaching 0

≤ 9
:;

Claim: If the sequence exists, then ∑'() converges
The left leaning lemma implies the sequence exists 61



Building the supermartingale

0 1 2 N-1 N N+1 M M+1… ……

Given: All states terminate with prob 1

p 1-p

Step 5: Prove ∑"#$ converges
"%: ' ↦Probability of reaching 
{*,* + 1,… } before reaching 0

Define the sequence ('1)1∈ℕ such that 
'1 is the smallest number such that 
"#$(5) ≤ 1/21 for all 5 ≤ 9Fix :, vary "#$ in ∑"#$(:)

: ≥ '1 ⟹ "#$(:) = 1
“Small” '1

9 < : < '1 ⟹ "#$(:) ≤ 1
“Medium” '1

: ≤ 9 ⟹ "#$(:) ≤
1
21

“Large” '1
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Building the supermartingale
Given: All states terminate with prob 1

Step 5: Prove ∑"#$ converges
"%: ' ↦Probability of reaching 
{*,* + 1,… } before reaching 0

Define the sequence ('1)1∈ℕ such that 
'1 is the smallest number such that 
"#$(5) ≤ 1/21 for all 5 ≤ 9

Fix :, vary "#$ in ∑"#$(:)

: ≥ '1 ⟹ "#$(:) = 1“Small” '1

9 < : < '1 ⟹ "#$(:) ≤ 1“Medium” '1
: ≤ 9 ⟹ "#$(:) ≤

1
21“Large” '1

n1 n2 ni

N

i

∑"#$ (:) ≤ *? + ∑
@A1B

C
DE ≤*? + 1
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Building the supermartingale
Defining an unbounded V by diagonalization

0 1 2 i-1 i i+1 M M+1… ……

Given: All states terminate with prob 1

p 1-p

!": $ ↦Probability of reaching 
{',' + 1,… } before reaching 0

Claim: V is well-defined, increasing, [! ≤ .] finite for each r

Step 6: Define the supermartingale !: $ ↦ ∑
123

4
!56($)

Define the sequence ($1)1∈ℕ such that 
$1 is the smallest number such that 
!56(;) ≤ 1/21 for all ; ≤ >
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Summary

1. V is well-defined
2. V is a supermartingale
3. [! ≤ #] is finite for each r
4. U is a variant
5. U is compatible with V

Given: All states terminate with prob 1

!%: ' ↦Probability of reaching 
{*,* + 1,… } before reaching 0

Define the supermartingale !: ' ↦ ∑
123

4
!56(')

Define the sequence ('1)1∈ℕ such that 
'1 is the smallest number such that 
!56(;) ≤ 1/21 for all ; ≤ >

Define the variant ?: state @ ↦length 
of shortest path from @ to ¬B 65



Outline

• A Program Logic (and why you can forget about it)

• The Rule

• Soundness

• Completeness

• Coffee
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A Sound and Complete Proof Rule for AST

To prove that ["#$] ≤ '(. *+,-. 1, 
find an integer valued expectation / and a real valued expectation 0
such that
• "#$ ∧ 3 ⟹ / > 0 ∧ 0 > 0 ,

• ¬3 ⟹ / = 0 ∧ 0 = 0,

• 0 ≥ '(. :,;<. (["#$]0),

• For all + ∈ ℝAB, there exists an C+ and a D+ such that
• 0 ≤ + ⟹ / ≤ D+,
• C+ ["#$ ∧ / = E ∧ 0 ≤ +] ≤ '(. :,;<. [/ < E] for all E
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Where do we go next?

• Applications: Proving AST for randomized protocols
• Research question: How can you add fairness?

• Theory: Proving AST for infinite-branching nondeterminism
• Research question: How can you combine ordinals and supermartingales?

• Tools: First steps based on Caesar
• Research question: Automation

Thank You!
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