
Validating Solidity Code
Defects using Symbolic and
Concrete Execution powered
by Large Language Models

Susan Ștefan Claudiu
Arusoaie Andrei
Dorel Lucanu

September 17 FROM 2025

Overview

● Key Terminology
● Slither and other relevant tools
● An example highlighting the limitations of

Analysis Tools and LLMs
● Our detection pipeline
● An example of processing a contract using

our pipeline
● Conclusion

Smart Contracts

Smart Contracts are pieces of
code that run on a blockchain
network. They are
implemented using a
programming language like
Solidity, Viper, Bamboo and
more.

Yifei Huang. Decoding Ethereum smart contract data (2021)

https://towardsdatascience.com/author/yifei-huang/

According to the official
documentation, Solidity is a
statically typed, compiled
programming language for
implementing smart
contracts. It was designed to
target the Ethereum Virtual
Machine (EVM).

Solidity

Once a smart contract is
deployed, we are unable

to replace it with a newer
version

Even though not
explicitly public, the
source code of the

deployed Smart Contract
can still be retrieved

Most Smart Contracts
directly handle a form of
currency or other classes

of assets

Immutable Public Financial

Defects in Smart Contracts are Critical

Slither
Static Analyzer for Smart Contracts

Importing the Slither module and
initializing the object which gives us

access to contract data

Defects found by Slither

Running Slither from the CLI

Part of the Foundry suite
along with Anvil and Cast.

Facilitates the development
and testing of Smart
Contracts using only Solidity

Allows developers
perform fuzz testing on
smart contracts

Forge
A formal verification tool
integrated within the
Foundry ecosystem

Fully compatible with
existing Forge tests.

It analyses all possible
execution paths through
symbolic execution

Kontrol

Other Development & Testing Tools
for Smart Contracts

A Reentrancy attack is a
smart contract vulnerability
that occurs when an external
contract call is able to call
back into ("re-enter") the
original function before it has
finished executing. However,
the transfer function does not
allow such exploits due to the
limited gas that is forwards.

Example - Reentrancy False Alarm
The balance of the
caller is reduced to
0 after sending the

currency.

Slither can be tricked!

Wrongfully reporting a Reentrancy
vulnerability for the contract on

the previous Slide

Do LLMs fare any better?

Even with additional help?

Analysis Tools vs LLMs

Analysis Tools LLMs

Detection Rate Narrower detection range
compared to LLMs

Able to correctly flag
scenarios which Analysis
Tools miss

False Alarms No false alarms for most
defect categories

Notable number of false
alarms,
over-generalization of
training data

Resource Consumption Most tools run on common
hardware

Only small models run on
common hardware

Consistency Deterministic Debatable

Contribution: Empower Static Analysis
Tools with LLMs Inference

Example: Reentrancy prerequisites

Example: Reentrancy Test Template

Check if the call is successful
for non Malicious users

Check if the call is successful
for Malicious users

Initialize the contract under
test and additional elements

Example: Reentrancy Test Template 1

Dummy import

Dummy declaration

Dummy initialization

Example: Reentrancy Test Template 2

Perform the attack and check
the balance of the attacker

Example: Reentrancy Test Template 3

Example: Reentrancy Generated Test

Concrete test contract setup
generated by the model

Method usage scenario
generated by the model

Example: Reentrancy Attacker Template

Attack setup step, model
must fill additional setup

steps

Empty attack scenario, must
be filled by the model

receive() implementation
must facilitate reentrant calls

Example: Reentrancy Attacker Generated

Attack setup step generated
by the model

Method under test call
generated by the model

Method under test reentrant
call generated by the model

Challenges & Limitations Documented
during our Experiments

Challenges Limitations

The cost of using LLMs via API Forge & Kontrol integration

Receiving a structured output
from LLMs

The detection of some defect
categories is limited by the
scope of our test templates

 Receiving consistent outputs from LLMs

Conclusion

Key Takeaways
● Novel detection pipeline: static analysis + LLMs +

symbolic/concrete execution.
● Our approach effectively validates true positives.

● Eliminates false alarms that plague existing tools.

Future Work
● Extend the set of defect templates for additional

defect categories to expand detection range
● Optimize and improve the test generation process
● Experiment with advanced prompting techniques

and locally deployed models.

THANK
YOU!

Q&A

