Validating Solidity Code
Defects using Symbolic and
Concrete Execution powered
by Large Language Models

Susan §1'efan Claudiu
Arusoaie Andrei
Dorel Lucanu

September 177 FROM 2025

Overview

Key Terminology
Slither and other relevant tools

An example highlighting the limitations of
Analysis Tools and LLMs

Our detection pipeline

An example of processing a contract using
our pipeline

Conclusion

Smart Contracts

Smart Contracts are pieces of W,(? Vfi’
code that run on a blockchain I I TN Wale
network. They are Browser IQ Browser IQ /-
implemented using a .

p . g . [HTh:L / JtS ldCSS] z HTN’I:L / JtS ldCSS
programming language like f 1
Solidity, Viper, Bamboo and l \.nmra,ot';‘iﬁif’;’i'iféhemy,.../
m O re . Backend ~ (Smart contracts i

Node / Python / Java / Ruby / ... (e Solidity / Vyper / Rust / ...
1 I
Storage ~ (Blockchain 1
Mongo / Firebase / L Ethereum / Polygon / Solana /...)

Yifei Huang. Decoding Ethereum smart contract data (2021)

https://towardsdatascience.com/author/yifei-huang/

Solidity

According to the official nragua solidity @.8.29:
documentation, Solidity is a . e
statically typed, compiled napping(address => uint) private balance;
programming language for nction deposit() exten
implementing smart W tce g se e
contracts. It was designed to

. function withdraw() external {
target the Ethereum Vlrtual uint addrBal = balance[msg.sender];
Machine (EVM))ayable(msg.sender).transfer(addrBal);

balance([msg.sender] = 0;

Defects in Smart Contracts are Critical

&

Immutable

Once a smart contract is

deployed, we are unable

to replace it with a newer
version

e

Public

Even though not
explicitly public, the
source code of the

deployed Smart Contract
can still be retrieved

Financial

Most Smart Contracts
directly handle a form of
currency or other classes

of assets

Slither

Static Analyzer for Smart Contracts

(env) PS E:\Contracts> slither .\GameContract.sol

‘solc --version' running mma Running Slither from the CLI

'solc .\GameContract.sol --combined-json abi,ast,bin,bin-runtime,srcmap,srcmap-runtime,userdo
INFO:Detectors:

s' runnir

INFO:Detectors:
sameContract.play() (GameContract.sol#31-41) uses timestamp for comparisons

Dangerous comparisons: .
- 'D.Llock.timestamp >= _gameStartTime && block.timestamp <= _gameEndTime (GameContract.s DefeCtS found by Sllther
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block-times
INFO:Detectors:

sameContract. owner (GameContract.sol#5) should be immutable
sameContract.fee (GameContract.sol#8) should be immutable
Reference: https://github.com/crytic/slither/wiki/Detector-Documentationt#istate-variables-that-could-be-declared-immutable
INFO:Slither:.\GameContract.sol analyzed (1 contracts with 100 detectors), 4 result(s) found

from slither.slither import Slither
Importing the Slither module and

initializing the object which gives us
slither = Slither(contract path) access to contracr data

Other Development & Testing Tools
for Smart Contracts

Forge Kontrol
Part of the Foundry suite A formal verification tool
— along with Anvil and Cast. — integrated within the

Foundry ecosystem

Facilitates the development Fully compatible with
— and testing of Smart — = existing Forge tests.
Contracts using only Solidity

Allows developers It analyses all possible
— perform fuzz testing on — execution paths through
smart contracts symbolic execution

Example - Reentrancy False Alarm

A Reentrancy attack is a
smart contract vulnerability
that occurs when an external
contract call is able to call
back into ("re-enter") the
original function before it has
finished executing. However,
the transfer function does not
allow such exploits due to the
limited gas that is forwards.

The balance of the
ty 0.8.29; caller is reduced to
O after sending the
t Bank { currency.
apping(address => uint) privat

tion deposit() exterr
balancelmsq.sender]

on withdraw()

uint addrBal = bglance[msqg.sender]:
ayal : ider).transfer(addrBal);
balance[msg.sender] = 0;

Slither can be tricked!

Wrongfully reporting a Reentrancy
vulnerability for the contract on
the previous Slide

INFO Sllther Bank sol analyzed (1 contracts with 100 detectors), 1
result(s) found

Do LLMs fare any better?

Hello, do you think that this contract is vulnerable to
reentrancy?

» Based on the contract code you've provided, the withdraw function is vulnerable to a

reentrancy attack. @®

Even with additional help?

The transfer function only attaches 2300 gas to the

transaction, is it enough to call a function?

No, 2,300 gas is generally not enough to call a function that modifies state (like another
withdraw call), which is why the transfer function was historically used as a method to

mitigate reentrancy attacks.

So is this contract vulnerable to Reentrancy?

% Yes, the withdraw function in the contract you provided is vulnerable to a reentrancy attack.

Analysis Tools vs LLMs

Analysis Tools

LLMs

Detection Rate

Narrower detection range
compared to LLMs

Able to correctly flag
scenarios which Analysis
Tools miss

False Alarms

No false alarms for most
defect categories

Notable number of false
alarms,
over-generalization of
training data

Resource Consumption

Most tools run on common
hardware

Only small models run on
common hardware

Consistency

Deterministic

Debatable

Contribution: Empower Static Analysis
Tools with LLMs Inference

Input: Solidity
Smart + Defect
category

Stage 1:
Prerequisite
Check

Prerequisites
Met?

End: Defect Not
Present

Yes

Stage 2: Test
Generation
using
Templates

Test
Generated
uccessfully?

Stage 3:
Test

Yes

No

End: Report
Potential
Defect

execution
successful?

Interpret test
results

—

YesJ

End: Final Report
Defect
presence/absence
confirmed

Example: Reentrancy prerequisites

Nn.

No S

Not Vulnerable

N
INU

External call to
another address?

Function in Contract

unction modifies
state variahles?
(e.g., halances,

ownership) Likely Safe

No—»

(Insufficient gas)

State modification
AFTER external call?

External call
forwards enough gas
for callback?

@ Highly Vulnerable
to Reentrancy

Example: Reentrancy Test Template

t Test is Test ff

ContractUnderTest b _contractUnderTest;
Attacker ic _attacker;

Initialize the contract under
test and additional elements

n setUp()
_contractUnderTest = new ContractUnderTest();

_attacker=new Attacker(a ss(_contractUnderTest));

unction test_proofReentrancyExploit(uint initialDeposit) public {

attacker), initialDeposit);
contractUnderTest), initialDeposit);

Check if the call is successful
for Malicious users

_attacker.setupAttack();

_contractUnderTest.attack();
assert(address(_attacker).balance > initialDeposit);

n_test_nroofllithdrawlcual vkdorks(uint _initialDennsit) n

vm.deal(ad this), initialDeposit);
vm.deal contractUnderTest), initialDeposit);

Check if the call is successful
for non Malicious users

Example: Reentrancy Test Template 1

import {ContractUnderTest} from "../../src/ContractUnderTest.sol"; Dummy import

contract Test is Test {

ContractUnderTest public _contractUnderTest)
Attacker public _attacker; Dummy declaration

_contractUnderTest = new ContractUnderTest(); Dummy initialization

_attacker=new Attacker(address(contractUnderTest));

Example: Reentrancy Test Template 2

iction test_proofReentrancyExploit(uint initialDeposit) public
vm.deal (address(_attacker), initialDeposit);
vm.deal (address(_contractUnderTest), initialDeposit);

vm.prank(address(_attacker));

_attacker.setupAttack();

Perform the attack and check

' ‘ : the balance of the attacker
_attacker.attack();

assert(address(_attacker).balance > initialDeposit);

Example: Reentrancy Test Template 3

ion test proofWithdrawUsuallyWorks(uint initialDeposit) public {

vm.deal (address(this), initialDeposit);
vm.deal (address(_contractUnderTest), initialDeposit);

receive() external payable {

Example: Reentrancy Generated Test

import {Bank} from ./../src/Bank.sol";

is Test {
s - Concrete test contract setup

c _attacker;
- generated by the model

1 setUp() blic {
_contractUnderTest = new Bank();
_attacker = new Attacker(address(_contractUnderTest));

ion test_proofReentrancyExploit(uint initialDeposit) r
vm.deal (address(_attacker), initialDeposit);
vm.deal(address(_contractUnderTest), initialDeposit);

vm.prank(address(_attacker));
_attacker.setupAttack(initialDeposit);

_attacker.attack();
assert(address(_attacker).balance > initialDeposit);

tion test_proofWithdrawUsuallyWorks(uint initialDeposit) p
vm.deal (address(this), initialDeposit);
vm.deal (address(_contractUnderTest), initialDeposit);

_contractUnder‘Test.deposit value: initialDeposit 5 MethOd Usage Scenario
. generated by the model

_contractUnderTest.withdraw();

Example: Reentrancy AHacker Template

tion setupAttack() public payable{ Attack setup step, model
attackCallCount=0; must fill additional setup
steps

Empty attack scenario, must
be filled by the model

receive() external payable {
if (attackCallCount < 1) {
attackCallCount++; receive() implementation
: all to the reepd ' SEIEREE Mmust facilitate reentrant calls

Example: Reentrancy Attacker Generated

function setupAttack(uint initialDeposit)
attackCallCount = 0;

_victim.deposit{value: initialDeposit}!

tion attack() public {
_victim.withdraw(

2

receive() external payable {
it (attackCallCount < 1)
attackCallCount++;

_victim.withdraw():

Attack setup step generated
by the model

Method under test call
generated by the model

Method under test reentrant
call generated by the model

Challenges & Limitations Documented
during our Experiments

Challenges Limitations

The cost of using LLMs via API Forge & Kontrol integration

The detection of some defect
categories is limited by the
scope of our test templates

Receiving a structured output
from LLMs

Receiving consistent outputs from LLMs

Conclusion

Key Takeaways

Novel detection pipeline: static analysis + LLMs +
symbolic/concrete execution.
Our approach effectively validates true positives.

Eliminates false alarms that plague existing tools.

Future Work

Extend the set of defect templates for additional
defect categories to expand detection range
Optimize and improve the test generation process
Experiment with advanced prompting techniques
and locally deployed models.

YOU!

