
Bridging Threat Models and Detections:
Formal Verification via CADP

Dumitru-Bogdan Prelipcean1,2,3 Cătălin Dima3

1-Alexandru Ioan Cuza University, Ias, i, Romania
2-Bitdefender, Ias, i, Romania

3-LACL, Université Paris–Est Créteil, France

September 17, 2025
Working Formal Methods Symposium 2025

1 / 23

The Problem

▶ Detection rules (SIEM/EDR/IDS) are written in diverse DSLs.

▶ Threat intelligence uses attack trees, ATT&CK, and IoCs—mostly informal.

▶ Gap: No formal assurance that rules cover the intended threat behavior.

Goal
Formally verify conformance between high-level threat models and executable detection
logic.

2 / 23

The Problem

▶ Detection rules (SIEM/EDR/IDS) are written in diverse DSLs.

▶ Threat intelligence uses attack trees, ATT&CK, and IoCs—mostly informal.

▶ Gap: No formal assurance that rules cover the intended threat behavior.

Goal
Formally verify conformance between high-level threat models and executable detection
logic.

2 / 23

Key Idea

Attack Tree
(threat model)

GTDL
(detection rules)

LNT (common
semantic domain)

translate

translate

CADP
(Bisimulator)

3 / 23

Contributions

1. Compositional LTS semantics for attack trees and GTDL.

2. Semantics-preserving translations to LNT.

3. Automated conformance checking (bisimulation, weak trace inclusion).

4. Tooling: CLI pipeline from models to CADP verification.

5. Evaluation: Real-world malware (LokiBot, Emotet) + parametric scalability.

4 / 23

Attack Trees (AT)

▶ Hierarchical decomposition of an attacker goal into subgoals.

▶ Constructors: LEAF, OR, AND (unordered), SAND (sequential).

▶ Denote a finite set of traces over atomic actions.

Trace Semantics

T (LEAFa) = {a}, T (OR(. . .)) =
⋃

T (·)

T (AND(. . .)) = ∥ (shuffle), T (SAND(. . .)) = · (concat)

5 / 23

Lokibot Attack Tree

6 / 23

GTDL: Generic Threat Detection Language

▶ Declarative rules over event streams with stateful conditions.

▶ Building blocks: assignments, plugin calls, IF/THEN/ELSE, action
GlobalFlag.Set("D").

▶ Execution model: many rules run in parallel, re-evaluated per event.

Observable event: the detection action (Set("D")) becomes label d.

7 / 23

GTDL

8 / 23

Use Case: System-Level (Lokibot)

[DETECTION]
Detect ion name = ’ Lok ibo tP roce s s ’
Apply when = ” Proce s s ”
[RULE]
v p r o c e s s := i n P l u g i n C a l l (I sProcessName , ”ytpgwim ”) ;
v l o c a t i o n := i n P l u g i n C a l l (I s I nP r o c e s sPa th , ”%TEMP%”);
IF v p r o c e s s AND v l o c a t i o n THEN

G loba l F l a g . Set (” Lok i bo tP r o c e s s ”) ;
END IF

9 / 23

Composite Signature (Correlation)

[DETECTION]
Detect ion name = ’ Lo k i b o t I n c i d e n t ’
Apply when = ” G l o b a l F l a g s ”
[RULE]
f l a g 1 := G l oba l F l a g . I s S e t (” Lok i bo tP r o c e s s ”) ;
f l a g 2 := G l oba l F l a g . I s S e t (” BotEx t en s i on s ”) ;
f l a g 3 := G l oba l F l a g . I s S e t (”TempRunKey ”) ;
f l a g 4 := G l oba l F l a g . I s S e t (”KnownCCAccesed ”) ;
IF f l a g 1 AND f l a g 2 AND f l a g 3 AND f l a g 4 THEN

G loba l F l a g . Set (” L o k i b o t I n c i d e n t ”) ;
END IF

10 / 23

AT → LNT (Sketch)

▶ LEAF: emits non-silent action.

▶ OR: nondeterministic choice.

▶ AND: parallel composition.

▶ SAND: sequential composition.

Correctness
For any AT A: Traces(tr(A)) = T (A).

11 / 23

GTDL → LNT

▶ Plugin-assigned variables become process parameters.

▶ Boolean logic and control flow map homomorphically to LNT.

▶ GlobalFlag.Set("D") 7→ output on channel dSet.

▶ Multiple signatures 7→ parallel composition.

Theorem (Trace Preservation)

For any GTDL rule P : Traces(T (P)) = JP KGTDL.

12 / 23

From GTDL to LNT — Side by Side

GTDL

[DETECTION] Name=’LokibotProcess’

[RULE]

v_process = inPluginCall(IsProcessName,"yptgwim");

v_location = inPluginCall(IsInProcessPath,"%TEMP%");

IF v_process AND v_location THEN

GlobalFlag.Set("LokibotProcess");

END IF

LNT

process LokibotProcess [flag:FLAG_CHANNEL]

(in var pname, ppath:String) is

if pname == "yptgwim" and ppath == "%TEMP%" then

flag(TRUE)

end if

end process

13 / 23

Common Alphabet & Channels

▶ Both AT and GTDL models emit on the same observable channels.

▶ Internal steps in GTDL become τ (silent) actions.

▶ Enables CADP to decide: strong/weak simulation, (bi)simulation, (weak) trace
(inclusion/equivalence).

14 / 23

Equivalences & Inclusions

▶ Strong bisimulation: strict stepwise matching (often too strong).

▶ Weak bisimulation: abstracts away τ .

▶ Trace equivalence/inclusion: focus on observable detections.

Interpretation

▶ Inclusion (AT ⊆ DET): no false negatives.

▶ Equivalence: no false negatives nor over-approximation.

15 / 23

Toolchain

▶ tree2lnt.py: AT (YAML) → LNT

▶ gtdl2lnt.py: GTDL → LNT

▶ verify.sh: compile, minimize, run bisimulator

▶ measure times.py: benchmark orchestration

16 / 23

Case Studies (Examples)

▶ LokiBot: AND-structured actions; observational equivalence achieved.

▶ Emotet: mixed AND/SAND; iterative refinement; inclusion holds.

Outcome
Framework flags semantic mismatches and guides signature refinement.

17 / 23

Case Study: LokiBot Tree

process LokibotTree [lokiBotProcSet, lokiBotExtset,

lokiBotTempRunKey:FLAG_CHANNEL, lokiBotDet:any] is

par

LokibotProcessLeaf [lokiBotProcSet]

|| LokibotExtensionLeaf [lokiBotExtset]

|| LokiTempExeRunKeyLeaf [lokiBotTempRunKey]

|| LokibotActions [lokiBotProcSet, lokiBotExtset, lokiBotTempRunKey,

lokiBotDet]

end par

end process

18 / 23

Case Study: LokiBot Detection

process Engine [lokiBotProcSet, lokiBotExtset,

lokiBotTempRunKey:FLAG_CHANNEL, lokiBotDet:any] is

loop

par

LokibotProcess [lokiBotProcSet] ("yptgwim", "%TEMP%")

|| LokibotExtension [lokiBotExtset] (".exe")

|| LokiTempExeRunKey [lokiBotTempRunKey] ("Run", "Run")

|| LokiDetection [lokiBotProcSet, lokiBotExtset, lokiBotTempRunKey,

lokiBotDet]

end par

end loop

end process

19 / 23

Parametric/Scalability Results

Setup. Attack trees & detection models with varying size and operators.
Findings.

▶ AND-only: weaktrace faster than observational.

▶ SAND-only: linear growth, similar times.

▶ OR-only: linear growth, both options feasible.

▶ Mixed AND-OR, AND-SAND: verification cost depends on operator mix.

20 / 23

Assumptions & Limitations

▶ Assurance depends on quality of attack trees.

▶ Current method is not anomaly-based; zero-days outside the model may evade.

▶ Extensions: automated AT and Detection synthesis, extended semantics for
plugins.

21 / 23

Conclusion

▶ Unified semantic domain (LNT) for threats and detections.

▶ Automated conformance with CADP (bisimulation, weak trace inclusion).

▶ Validated on real malware and scalable synthetics.

Takeaway

Formal verification can systematically reveal detection blind spots and guide refinement
before deployment.

22 / 23

Thank you for your attention !
Q&A

23 / 23

	Problem & Motivation
	Contributions
	Background
	Method
	Verification
	Evaluation
	Discussion & Limits
	Conclusion

