Bridging Threat Models and Detections:
Formal Verification via CADP

Dumitru-Bogdan Prelipcean’?3 C3t3lin Dima3

1-Alexandru loan Cuza University, lasi, Romania
2-Bitdefender, lasi, Romania
3-LACL, Université Paris—Est Créteil, France

September 17, 2025
Working Formal Methods Symposium 2025

1/23

The Problem

» Detection rules (SIEM/EDR/IDS) are written in diverse DSLs.
» Threat intelligence uses attack trees, AT T&CK, and loCs—mostly informal.

» Gap: No formal assurance that rules cover the intended threat behavior.

2/23

The Problem

» Detection rules (SIEM/EDR/IDS) are written in diverse DSLs.
» Threat intelligence uses attack trees, AT T&CK, and loCs—mostly informal.

» Gap: No formal assurance that rules cover the intended threat behavior.

Goal
Formally verify conformance between high-level threat models and executable detection
logic.

2/23

Key ldea

Attack Tree | translate | LNT (common CADP
(threat model) semantic domain) (Bisimulator)
A
GTDL |
(detection ruIes)J translate

3/23

Contributions

Compositional LTS semantics for attack trees and GTDL.
Semantics-preserving translations to LNT.
Automated conformance checking (bisimulation, weak trace inclusion).

Tooling: CLI pipeline from models to CADP verification.

o L=

Evaluation: Real-world malware (LokiBot, Emotet) + parametric scalability.

4/23

Attack Trees (AT)

» Hierarchical decomposition of an attacker goal into subgoals.
» Constructors: LEAF, OR, AND (unordered), SAND (sequential).

» Denote a finite set of traces over atomic actions.

Trace Semantics

T(LEAF,) ={a}, T(OR(...))=J7T()
T(AND(...)) =|| (shuffle), T(SAND(...)) = - (concat)

5/23

Lokibot Attack Tree

lokiBotProcSet lokiBotExtset lokiBotTempRunkey lokiBotDet

6/23

GTDL: Generic Threat Detection Language

» Declarative rules over event streams with stateful conditions.

» Building blocks: assignments, plugin calls, IF/THEN/ELSE, action
GlobalFlag.Set("D").

P> Execution model: many rules run in parallel, re-evaluated per event.

Observable event: the detection action (Set("D")) becomes label d.

7/23

GTDL

Sensors|

Processes

Registry

0000

Process Events|

File events

Reg events

Metwork events

Central bus

Global state data (flags)

Update stale data

Evaluation engine

Plugin 1 signatures,

f
i

|

| | Signatureil Signature 12 L/J Signature 1n

i

i

i

1

Plugin m signatures,

Detection

8/23

Use Case: System-Level (Lokibot)

[DETECTION]
Detection_.name = 'LokibotProcess'

Apply_when = " Process”

[RULE]

v_process := inPluginCall(lsProcessName, "ytpgwim");
v_location := inPluginCall(lsInProcessPath , "%TEMP%");

IF v_process AND v_location THEN
GlobalFlag.Set (" LokibotProcess");
END IF

9/23

Composite Signature (Correlation)

[DETECTION]
Detection_.name = 'Lokibotlncident '
Apply_when = " GlobalFlags”

[RULE]

flagl := GlobalFlag.IsSet (" LokibotProcess");
flag2 := GlobalFlag.lsSet (" BotExtensions");
flag3 := GlobalFlag.lsSet (" TempRunKey");
flagd := GlobalFlag.IsSet (" KnownCCAccesed");

IF flagl AND flag2 AND flag3 AND flag4 THEN
GlobalFlag.Set(" Lokibotlncident");
END IF

10/23

AT — LNT (Sketch)

» LEAF: emits non-silent action. Correctness

» OR: nondeterministic choice. For any AT A: Traces(tr(A4)) = T (A).
» AND: parallel composition.

» SAND: sequential composition.

11/23

GTDL — LNT

» Plugin-assigned variables become process parameters.

» Boolean logic and control flow map homomorphically to LNT.
» GlobalFlag.Set("D") — output on channel dSet.

» Multiple signatures > parallel composition.

Theorem (Trace Preservation)
For any GTDL rule P: Traces(T(P)) = [P]cTDL-

12/23

From GTDL to LNT — Side by Side

GTDL

[DETECTION] Name=’LokibotProcess’
[RULE]
v_process = inPluginCall(IsProcessName,"yptgwim");

v_location = inPluginCall(IsInProcessPath,"%TEMP%");

IF v_process AND v_location THEN
GlobalFlag.Set ("LokibotProcess");
END IF

LNT

process LokibotProcess [flag:FLAG_CHANNEL]
(in var pname, ppath:String) is
if pname == "yptgwim" and ppath == "}TEMP}%" then
flag(TRUE)
end if
end process

13/23

Common Alphabet & Channels

» Both AT and GTDL models emit on the same observable channels.
» Internal steps in GTDL become 7 (silent) actions.

» Enables CADP to decide: strong/weak simulation, (bi)simulation, (weak) trace
(inclusion/equivalence).

14/23

Equivalences & Inclusions

» Strong bisimulation: strict stepwise matching (often too strong).

> Weak bisimulation: abstracts away 7.

» Trace equivalence/inclusion: focus on observable detections.

Interpretation

» Inclusion (AT C DET): no false negatives.

» Equivalence: no false negatives nor over-approximation.

15/23

Toolchain

» tree2lnt.py: AT (YAML) — LNT
> gtdl2lnt.py: GTDL — LNT
> verify.sh: compile, minimize, run bisimulator

> measure_times.py: benchmark orchestration

16/23

Case Studies (Examples)

> LokiBot: AND-structured actions; observational equivalence achieved.
» Emotet: mixed AND/SAND; iterative refinement; inclusion holds.

Outcome
Framework flags semantic mismatches and guides signature refinement.

17/23

Case Study: LokiBot Tree

process LokibotTree [lokiBotProcSet, lokiBotExtset,
lokiBotTempRunKey:FLAG_CHANNEL, lokiBotDet:any] is

par

LokibotProcessLeaf [lokiBotProcSet]

|| LokibotExtensionLeaf [lokiBotExtset]

|| LokiTempExeRunKeyLeaf [lokiBotTempRunKey]

|| LokibotActions [lokiBotProcSet, lokiBotExtset, lokiBotTempRunKey,
lokiBotDet]

end par
end process

18/23

Case Study: LokiBot Detection

process Engine [lokiBotProcSet, lokiBotExtset,
lokiBotTempRunKey:FLAG_CHANNEL, lokiBotDet:any] is

loop

par

LokibotProcess [lokiBotProcSet] ("yptgwim", "%TEMP%")

|| LokibotExtension [lokiBotExtset] (".exe")

|| LokiTempExeRunKey [lokiBotTempRunKey] ("Run", "Run")

|| LokiDetection [lokiBotProcSet, lokiBotExtset, lokiBotTempRunKey,

lokiBotDet]

end par

end loop

end process

19/23

Parametric/Scalability Results

Setup. Attack trees & detection models with varying size and operators.
Findings.

» AND-only: weaktrace faster than observational.

» SAND-only: linear growth, similar times.

» OR-only: linear growth, both options feasible.

» Mixed AND-OR, AND-SAND: verification cost depends on operator mix.

20/23

Assumptions & Limitations

» Assurance depends on quality of attack trees.
» Current method is not anomaly-based; zero-days outside the model may evade.

» Extensions: automated AT and Detection synthesis, extended semantics for
plugins.

21/23

Conclusion

» Unified semantic domain (LNT) for threats and detections.
» Automated conformance with CADP (bisimulation, weak trace inclusion).

> Validated on real malware and scalable synthetics.

Takeaway

Formal verification can systematically reveal detection blind spots and guide refinement
before deployment.

22/23

Thank you for your attention !

Q&A

23/23

	Problem & Motivation
	Contributions
	Background
	Method
	Verification
	Evaluation
	Discussion & Limits
	Conclusion

