t ukasiewicz Logic with Actions for

Neural Networks training

loana Leustean® Bogdan Macovei*®

@Faculty of Mathematics and Computer Science, University of Bucharest
bResearch Center for Logic, Optimization and Security (LOS)

FROM 2025
September 18, 2025

1/35

IIHilIEiHIIEIlIII

1. Motivation

2. Background on tukasiewicz Logic
3. Hybrid Modal Logic Framework
4. Implementation in Lean

5. Related work & Conclusions

2/35

® neural networks are powerful tools, but they are black boxes;

® our goal is to represent the training process as logical deduction, in order to verify
properties:
® we represent the multi-layer perceptron as a logical formula;
® we represent the actions of the training process as modal operators;

® we implement this system in Lean 4.

3/35

Historical Context

Figure: Jan tukasiewicz

® 1920s: J. tukasiewicz defines 3-valued logics.
® 1930: extended to n-valued and co-valued (with Tarski).
e we denote the oo-valued tukasiewicz as tuko: truth values in [0, 1].

4/35

t ukasiewicz Logic

e the logical connectives are implication (—) and negation (—)
¢ ~yx:=1-xand x =, y:=min(l —x+y,1), forany x,y € [0,1];
® the axioms are:

(L1) o= (¥ =1 9)

(L2) (¢ =1 9) =0 (¥ = x) =1 (v =L X))
(L3) (p—=1¥) =19) =L (W =L 9) =L)
(L4) (- =L —9) =L (¢ =L V)

5/35

MV-algebra

Definition (MV-algebra)
An MV-algebra is a structure (A, &,*,0) such that:
® (A ,@,0) is an abelian monoid;

e the following properties are satisfied:
(MV1) (x*)*=x
(MVz) (0*)® a=0*
(MV3) (x*@y) @y=(ye&x) ®x

We define in any MV-algebra the auxiliary operations, for any x,y € A:
1:=0* xOy:=(x*®y*)* X—=y =x"®y
XOy=x0-1y xVy=x0y") oy xAy =xdy*)oy

6/35

Riesz MV-algebra

Definition (Riesz MV-algebra)

A Riesz MV-algebra is a structure (R, ®,*,{r | r € [0,1]},0) such that (R, ®,*,0) is an
MV-algebra and {r | r € [0,1]} is a family of unary operation such that the following
properties (RMV1)-(RMV4) hold:

(RMV1) r(x®@y*) = (rx)©® (ry)*

(RMV2) (r®gq*)-x=(rx)©® (gx)*

(RMV3) r(gx) = (rq)x

(RMV4) 1x = x.

Note that if we consider {r | r € [0,1] N Q} we obtain DMV-algebras (divisible
MV-algebras). We denote, in general, [0,1]p :=[0,1]NQ

7/35

t ukasiewicz Neural Network Architecture

Definition (Multi-Layer Perceptron in tukasiewicz Logic)

A MLP with k hidden layers, n inputs and n outputs can be represented as a function
F :[0,1]" — [0,1]", such that

n n
)G:p(Zvd,‘p (...p(Zngx;—i—bO) > —|—bk>
=1 i=1
where

® F(x1,..-yxn) = (y1,---,¥n);
¢ p:R — [0,1] is the activation function p(x) := ReLUi(x) := min(1, max(0, x));
k

.W’j

are the weights in the k' layer.

8/35

Hybrid Modal Logic Framework

e we recall: modal logic, hybrid modal logic and many-sorted hybrid modal logic
(H=(©));

® then, we specify the multi-layer perceptron and its training process as a particular
theory (AMLP) of Hz(@)

9/35

Modal Logic

Language. Propositional variables p € Prop, Booleans =, A, V, —, and one modality O (dual
Kripke semantics. A frame F = (W, R), model M = (F, V) with V : Prop — P(W). For

we W:
M,wkEp < we V(p)

M,w = —p <= M,w £ o,
MwEp—=Y = (MwEp= MwEy),
M,w = O¢p < forall v(wRv = M,v E).
Hilbert system (K).
e All propositional tautologies.
® Modal axiom (K): O(¢ — ¢) — (Op — Ov).
® Rules: Modus Ponens (MP) and Necessitation (Nec): from ¢ infer F Oop.
This system is sound and complete for the class of all Kripke frames (W, R); no frame conditions

are imposed on R.
10/35

Hybrid Modal Logic H(Q)

Language. Extend K with a denumerable set of nominals i,j,... (names of single worlds) and
the satisfaction operator ©;¢p.

Kripke semantics (with names). A model M = (W, R, V) with V(i) € W for every nominal i
(single designated world). For w € W:

Mwli < w=V(i), M,wEQip — M, V(i) E ¢,

Booleans and O as in K.

Axioms/rules on top of K.

* (KQ) Gi(p—v) — (Qip— Q).

® (Ref@) ©;i.
® Rules: MP, Nec (for O), and Hybrid generalization (Gen@): from F ¢ infer - @;p (with i
fresh).

Nominals name states; @;p says “¢ holds at the state named i”. This enables direct reference to
states and local reasoning while retaining K's frame-general completeness.
11/35

Many-sorted Hybrid Modal Logic Hy (@)

Signature. ¥ = (5, X, N) where S is a set of sorts; X gives poly-ary modal operators
0:51% X8, = 5; N = (Ns)ses are constant nominals of sort s.

Language (by sort s). ps = p|j|—ps|psV os|o(@s,--s9s,)s | ©fpr.

Frames and models. A ¥-frame F = ((W;)ses, (Ry)oes, (N)ses), with
Ry C Ws x Wy x -+ x Wy, NI ={we | c € Ns} C W, (singletons). A model M = (F, V)
where V : PROP —P(W) is S-sorted.

Satisfaction (only non-Boolean clauses).
e M,w E j, if and only if V,(j) = {w} for any j € NOM; U N,

° ifoecX, s.5then M,w ’é o(¢1,...,¢n), if and only if there is
(Wi, ..., w,) € W, X --- x W, such that Ryww; ... w, and M, w; £ ¢; for any i € [n],

e M,wE @3 if and only if M, u |£ 1 where k € NOM; U N;, 1 has the sort t and
V¥ (k) = {u}.

12/35

Many-sorted Hybrid Modal Logic Hy (@)

* The axioms and the deduction rules of .#5:

— Forany s € S, if @ is a formula of sort 5 which is a theorem in propositional logic, then ¢ is an
axiom.

Axiom schemes: for any 6 € X, .,
the following formulas are axioms:
(Kg) (., @i1,0 = 2,051,
(090139, 0i1,-.) = 0 (e it X P)
(Duala) G (Wiyeeo, W) € 20 (Wi,)

Deduction rules: Modus Ponens and Universal Generalization
(MP) if |“¢ and }*¢ — y then |-y
(UG) if [¢ then 0" (@1, @, ..05)

« Axiom schemes: any formula of the following form is an axiom, where s,5,r are sorts, 6 € X,
@, W, 0,...,¢, are formulas (when necessary, their sort is marked as a subscript), j,k are nominals or
constant nominals:

(K@) @(¢ > y) > (@9 > @) (Agree) @@ ¢, > @',
(SelfDual) @’gy > 2@}y (Intro) j = (¢ <+ @39;)
(Back) (... 1, @5y, 6i1..)s = @y (Ref) @3,
(Nomx) @xA@x— @;j

. and for any formulas ..., ¢, ¢, % of appropriale sorts,

)=

* Deduction rules:
(BroadcasiS) if |- @', then [~ @7 ¢,
(Gen@) il }iw then |- @ ¢, where j and ¢ have the same sort *
(Name@) if |~ @;¢ then -9, where I is a nominal
(Paste) il -@jo(...,I,...)A@¢ = yihen -@;0(...,¢,...) 2> ¥
where [is a nominal

Here, j and k are nominals or constant nominals having the appropriate sort.

Figure 1: The system .725(@) [19] 13/35

Multi-layer perceptron theory

e we consider 3 := (S, X, N) with S = {rmv, act, In} with the following definition of
the particular sets of operators and constant nominals:

® Y= {-L:rmv—rmv,®:rmvxrmv—rmviU {0, :rmv—rmv|rel01l]g};
® Nimv = {7 | r€[0,1]g} a set of nominal constants

® Y.t = {init, train,stop : rmv" — act | n € N},

o ¥, ={[_]{L) :act x rmv" — In| n € N}

14/35

Axioms for rmv-formulas

+ Axioms for nominal constants:

(Noml) 7y r¢ 0¥ (Nom2) Yo, 1Sy (Nom3) g Or)y

= Axioms for the MV-algebraic operations:
M) (p@r(ydry)) < (poLy)@Ly M4) () < (@)
M2) ((-1)BL) > (L) M5) (e y) « (VL o)
M3) ((poOLvy)oLy) & (VoL we)sLe) (M6) 1< (9dLh)

» Axioms for the scalar multiplication:
R (Or(@oLwy)) < ((0r) ©OL(0ry)) RA) (019) > @
(R2) (Orf_-:-—qu) A ((Ortp} O] 1.-.(0&1’)} (R3) (O,-(OQ‘P}) And (Or-qtp)

where r,g € [0, 1|, r- g is the real product on [0, 1], ++ is the modal equivalence from #5 (@) and @, v, x

are arbitrary rmv-formulas.

Figure 2: Axioms for rmv-formulas

15/35

Definitions for neural networks

® n (the number of inputs), k (the number of hidden layers) € N;

® if h=(h1,..., hy) €[0,1]3, then we denote by h{ the vector (hy, ..., h,) of
corresponding rmv-nominal constants;

o if w=(wy)!;_; € Mn([0,1]g) is a square matrix then we denote by w := (wj;)];_;
the corresponding matrix of rmv-nominal constants

16/35

Definitions for neural networks

n (the number of inputs), k (the number of hidden layers) € N;

if h=(h1,..., hn) € [0,1]3, then we denote by h{ the vector (hy, ..., h,) of
corresponding rmv-nominal constants;

it w = (wy)];_; € Ma([0,1]g) is a square matrix then we denote by w := (w;;)
the corresponding matrix of rmv-nominal constants

n
ij=1

The atomic act-formulas are:

® injt(hy) starts the forward training for the n inputs hj;
® train(h]) performs a forward step for the n inputs hJ;
® stop(h]) stops the training process with the outputs hf.

16/35

Definitions for neural networks

the training process of a neural network is an inference on the sort In;

the particular operator is [aact](Stymy) where

® (. IS an action;
® st is a sequence of formulas of sort rmv representing a configuration;

the entire formula means that in the state st,,, we perform the action a;

® note that we use [aact]() which means that we reached the empty state.

17/35

Neural networks axioms

e before defining the axioms, we consider the following notations where A%, bf are
vectors and wj is a matrix of nominal terms of sort rmv:
(nl) neXtW,b(Af) = (b ® @7:1 <>W1i>\i7 .,b® @7:1 <>Wni>\i)
(n2) end(y,\],e) := d.(y, \/Z/\,-) — €
(n3) updatedyr (w§, bg) := (uwk, ubf).

18/35

Neural network axioms

For a neural network with one input (h1,..., h,) € [0, 1](’@ and the expected output
y € [0,1]g the axioms are:
(NO) [init(h{)J{wg, b) — [train(h{)](wg, bf)
(N1) [train(h])](wf, bf) — [train(nexty, b, (h]))[(wf, 1, b, 1)
(N2) [init(h])l{wg, b§) — ([train(AT)]() A —CY, end(y, \{,e) —
[init(hT)]updateds (wg, bf)
(

)
(N3) [init(h)(wg, b§) — ([train(AD)I() A @f) end(y, A,) — [stop(A])](wg, bf))

19/35

Neural network axioms

For a neural network with one input (h1,..., h,) € [0, 1](’@ and the expected output
y € [0,1]g the axioms are:
(NO) [init(h{)J{wg, b) — [train(h{)](wg, bf)
(N1) [train(h])](wf, bf) — [train(nexty, b, (h]))[(wf, 1, b, 1)
(N2) [init(h])l{wg, b§) — ([train(AT)]() A —CY, end(y, \{,e) —
[init(hT)]updateds (wg, bf)
(

)
(N3) [init(hT)](wk, bk) — ([train(AD)]() A @’1”Lend(y, A g) = [stop(AT)(wk, b))

Our logic is Hx (@) 4+ Aprp, where

Aup = {(Nom1) — (Nom3), (M1) — (M6), (RL) — (R4), (N(0) — (N3)}

The (weak) completeness results hold: our logic is complete with respect to the class of
models defined by Apyp.

19/35

1
hl % a —)\1

hy @ =@

Figure: Example

® we have: n=2, k=1,

e we consider: the inputs h = (0.2,0.3), the expected output y = 0.8, the admitted
error ¢ = 1071, the learning rate n = 0.1 and the initial weights and biases:

04 03 09 0.8
W0_<0.6 0.1)'W1_(0 1)vb0—0-1,b1—0.15.

20/35

The training process performs as follows:
(1) [init(h)]{(wo,w1), (bo, b)) — [train(h)]((wo, w1), (bo, b1)) ~ (NO)
(2) [train(h)]{(wg,w1), (bo, b1)) — [train(nexty, b, (h))]{(w1,b1) (N1)

If al = (al, a}) = nextyq b, (h), then al = (0.27,0.25).
(3) [train(a)](w1,b1) — [train(nexty, b, (2))]() (NI)
We note that A = (A1, A\2) = nexty, b, (a) = (0.393,0.626).
(4) Linit(h)]{(wo, w1), (bo, b1)) — [train(A)]() (1,2,3)

We note that y = 0.626, so end(y, \,e) = di(y,y) —1 € is equivalent with 0.174 — 0.1,
which means that @’1”Lend(y, A, g) is false. Consequently, we apply (N2):

(5) [init(h)]{(wo,w1), (bo, b1)) — ([train(N)]() A ﬂ©’1”Lend(y, A g) —
— [init(h)]updated ((wo,w1), (bo, b1))) (N2)

21/35

Verifying network properties

e the system Hy (@) + App can be adapted for verifying network properties;
® we show that we can track the number of eochs of the training process;

® we consider E our limit, and if 1z = 1/E, then 1g @ --- @ 1g = 1 if the sum has E
terms;

® we keep this formula as the first argument of the configuration operator
(_) : rmv"™ — In.

22/35

Verifying network properties - axioms

(N

(N

0-£

) Linit(hD)](r, wg, bs) A ﬁ©’”r—> [train(h?)](r, w§, bf)
0g) [init(hD)](r, w,b&) A @’”r — [stop()] (1L, wg, bf)
(N1) [train(h))(r,wf, bf) — [train(nextw, b, (h]))(r, w1, bl 1)
(N2) [init(h])){r, wg,bg) — ([train(A))]() A —@T) end(y, Af,€) —
[init(hT)]updatedyr (r @ 1g,wh, bs))
(N3) [init(h))(r, wg, bg) — ([train(A)](r) A @, end(y, A],€) — [stop(A])](r, wg, bg))

I »

23/35

Backpropagation in tukasiewicz logic

® Backpropagation is formulated entirely within tukasiewicz logic: every stage is
computed in [0, 1] and uses only MV-algebraic operations.

® For each layer t € {1,..., k}, the forward pass is a; := ReLU;1(z;), where
zt = Wear—1 + bt
® The derivative of the activation is represented as a diagonal matrix

D' = diag(1(01)(2;):- - Loy (2")),

where n; is the number of neurons of layer t and 1(g;)(z) =1if 0 <z<1and0
otherwise.

® At the output layer the initial gradient is g := sign(ax — y) € {—1,0,1}".

24/35

Chain rule and parameter gradients

® The loss is measured with the tukasiewicz distance d; and backpropagation proceeds
by the chain rule.
® For any hidden layer t,

thdL - I_Itg, I_It = Dt(Wt+1)TDt+1(Wt+2)T . e Dk

® Parameter gradients:

Gw, = VwdL = (Vzdy)(a-1)', Gp, = VpdL = V.

25/35

Normalization and t.ukasiewicz updates

¢ Since raw gradients may lie outside [0, 1], normalize by the ¢,,—norm:

lg|

:m 6[0,1], e>0.
oo

g

e With learning rate 1 € [0, 1], combine via the tukasiewicz product:

A

A=n®g.
® Update is expressed exclusively with tukasiewicz operations. For each weight:

w = (WS A7) @& AT

A+{n®§ g<0 A_{n®é g>0

. ? .
0, otherwise 0, otherwise

26 /35

Implementation in Lean

® implementation of the many-sorted hybrid modal logic + the multi-layer perceptron
theory;

® algorithm that generates a model,

® real-world experiments.

27/35

rid modal logic in Lean 4

NO [T:Ctx o) (@ y:FormNN o) : ProofNN I § [[ActionNN.init]] ¢ O [[ActionNN.train]] y
N1 (I} {[nm:Nat) {W:Matrix Float nm] {b: Float) {¢@ : List (FormNN o)} :
ProofNN I"$ [[ActionNN.train]] (FormNN.1list @) O FormNN.list (layer_activation_formbW ¢)
N2 ([:Ctx o) (nk:Nat)
[W: Vector (Matrix Float nn)k} {b: Vector Float k)
{input : Vector Float n} {L: List (FormNN o)}
{target : FormNN &) (£ : FormNN o) :
let y :=FormNN.list (encode_pair Wb)
let trainPart := [[ActionNN.train]] (FormNN.list L)
let condition := —L (FormNN hybrid (#n 1) (sort.atom () (target L £))
ProofNN I"$ ([[ActionNN.init]] w O (trainPart & condition)) O [[ActionNN.update]] w
N3 [I:Ctx o) {nk: Nat
{W:Vector (Matrix Float nn) k} {b: Vector Float k|
{input : Vector Float n} (L : List (FormNN o))
{target : FormNN &) (£ : FormNN o) :
let y :=FormNN.list (encode_pair Wb)
let trainPart := [[ActionNN.train]] (FormNN.list L)
let condition := FormNN.hybrid (#n 1) (sort.atom ()) (target L £)
ProofNN I" § ([[ActionNN.init]] y D (trainPart & condition)) D [[ActionNN.Stop]] w

28/35

Verifying the number of epochs

theorem inductive_step_termination
[nmk:Nat) {yn £E:Float) {[": Ctx &}
|W: Vector (Matrix Float nm) k) {b: Vector Float k)
[1lp :List $ FormNN o} {1n: sort o)
|mem v : FormNN o'}
[Inhabited $ FormNN o] [Inhabited $ Nominal o] [0fNat (Fin o) 0] :
Ik ([[ActionNN.train]] < mem, v O FormNN.list 1@) »
'+ [[ActionNN.update]] <mem () nomToForm (#y (1/E)), v
'~ ~@@(#n 1), 1n : ((dL (nomToForm (#y y)) (foldr (fun ¢ w=> @ V y) zL 1¢)) L nomToForm (#y £))
'+ (ee(#n 1), 1n : dL mem (nomToForm (#y ((E — 1)J/E)))) &

[[ActionNN.train]| < mem () nomToForm (#y (1/E)), v

20/35

Automatically Generated Model Algorithm

Start from the initial state sg, with initial weights and biases
apply Action.train to compute a new state via forward propagation
Evaluate the output of the network.

Compute the loss with respect to the given target vector.

AR

If the loss is below the given threshold: (5.1) apply Action.stop to finalize the
training and (5.2) terminate the algorithm and return the list of all transitions and
the final state, with the computed weights and biases.

6. Else: (6.1) apply Action.update to adjust the biases and (6.2) repeat from step 2
for the next epoch, up to the maximum allowed number of epochs.

30/35

Experiment - dataset

Figure: Two moons dataset for classification

31/35

Experiment - training & results

® 6000 training examples & 2000 test examples;

® these classes are balanced;

e cach input vector is scaled to the unit interval [0, 1];

® we use a fully-connected architecture with two hidden layers, of 32 neurons each,
followed by a single output unit;

° n=1;

® we use in the training process mini-batches of size 128 for 250 epochs;

® we compare with a similar Python architecture, but with ReLU in the hidden layers, a
sigmoid output, binary cross-entropy and SGD as the optimization part.

Model Train Accuracy | Test Accuracy
Lean tukasiewicz MLP 0.9 0.89
Python Classic MLP 0.96 0.96

Table: Comparative results

32/35

Related Work

® the idea of representing neural networks as formulas of an extension of tukasiewicz logic
goes back to earlier work; recent Logical Neural Networks further systematize t-norm—based
approaches;

® our setting builds on the general many-sorted hybrid modal logic from prior work where it
was used to specify a (toy) programming language and its operational semantics;

® formal verification has emerged as a tool for certifying NN behaviour; the Hoare-like
framework NeSAL is highlighted. In related results, the system Hy(@, V) can model a
programming language and an adequate Hoare logic, suggesting future alignment with
NeSAL within our logic;

® |ean 4 is chosen for its dual nature as an extensible theorem prover and an efficient
programming language.

33/35

Conclusions

® we propose many-sorted hybrid modal logic as a general, expressive system in which a
multilayer perceptron (with ReLU;) is specified as a particular theory, training actions
become modal operators and the training process is a sequence of logical deductions;

® using Lean 4, the algorithmic implementation of training is backed by logical proofs,
integrating specification, verification, and execution;

® on two-moons experiment, the tukasiewicz MLP achieves ~0.90 train / 0.89 test accuracy
(compared to 0.96 / 0.96), indicating stable learning under strict fukasiewicz arithmetic and
pointing to refinements (e.g., smoother/fuzzy losses).

® this work contributes to defining and analyzing neural networks within a logical framework,
supporting more transparent and reliable Al.

34/35

The End

	Motivation
	Background on Łukasiewicz Logic
	Hybrid Modal Logic Framework
	Implementation in Lean
	Related work & Conclusions

