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Motivation

• neural networks are powerful tools, but they are black boxes;

• our goal is to represent the training process as logical deduction, in order to verify
properties:

• we represent the multi-layer perceptron as a logical formula;
• we represent the actions of the training process as modal operators;

• we implement this system in Lean 4.
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Historical Context

Figure: Jan Łukasiewicz

• 1920s: J. Łukasiewicz defines 3-valued logics.
• 1930: extended to n-valued and ∞-valued (with Tarski).
• we denote the ∞-valued Łukasiewicz as Łuk∞: truth values in [0, 1].
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Łukasiewicz Logic

• the logical connectives are implication (→L) and negation (¬L)
• ¬Lx := 1 − x and x →L y := min(1 − x + y , 1), for any x , y ∈ [0, 1];
• the axioms are:

(L1) φ→L (ψ →L φ)
(L2) (φ→L ψ) →L ((ψ → χ) →L (φ→L χ))
(L3) (φ→L ψ) →L ψ) →L (ψ →L φ) →L φ)
(L4) (¬ψ →L ¬φ) →L (φ→L ψ)
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MV-algebra

Definition (MV-algebra)
An MV-algebra is a structure (A,⊕,∗ , 0) such that:
• (A,⊕, 0) is an abelian monoid;
• the following properties are satisfied:

(MV1) (x∗)∗ = x
(MV2) (0∗)⊕ a = 0∗

(MV3) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x

We define in any MV-algebra the auxiliary operations, for any x , y ∈ A:
1 := 0∗ x ⊙ y := (x∗ ⊕ y∗)∗ x → y := x∗ ⊕ y
x ⊖ y = x ⊙ ¬Ly x ∨ y := (x ⊙ y∗)⊕ y x ∧ y := (x ⊕ y∗)⊙ y
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Riesz MV-algebra

Definition (Riesz MV-algebra)
A Riesz MV-algebra is a structure (R,⊕,∗ , {r | r ∈ [0, 1]}, 0) such that (R,⊕,∗ , 0) is an
MV-algebra and {r | r ∈ [0, 1]} is a family of unary operation such that the following
properties (RMV1)-(RMV4) hold:
(RMV1) r(x ⊙ y∗) = (rx)⊙ (ry)∗

(RMV2) (r ⊙ q∗) · x = (rx)⊙ (qx)∗

(RMV3) r(qx) = (rq)x
(RMV4) 1x = x .

Note that if we consider {r | r ∈ [0, 1] ∩Q} we obtain DMV-algebras (divisible
MV-algebras). We denote, in general, [0, 1]Q := [0, 1] ∩Q
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Łukasiewicz Neural Network Architecture

Definition (Multi-Layer Perceptron in Łukasiewicz Logic)
A MLP with k hidden layers, n inputs and n outputs can be represented as a function
F : [0, 1]n → [0, 1]n, such that

yj = ρ

(
n∑

l=1

wk
jl ρ

(
. . . ρ

(
n∑

i=1

w0
pixi + b0

)
. . .

)
+ bk

)

where
• F (x1, . . . , xn) = (y1, . . . , yn);
• ρ : R → [0, 1] is the activation function ρ(x) := ReLU1(x) := min(1,max(0, x));
• wk

ij are the weights in the kth layer.
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Hybrid Modal Logic Framework

• we recall: modal logic, hybrid modal logic and many-sorted hybrid modal logic
(HΣ(@));

• then, we specify the multi-layer perceptron and its training process as a particular
theory (ΛMLP) of HΣ(@).
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Modal Logic

Language. Propositional variables p ∈ Prop, Booleans ¬,∧,∨,→, and one modality □ (dual
♢φ := ¬□¬φ).

Kripke semantics. A frame F = (W ,R), model M = (F ,V ) with V : Prop → P(W ). For
w ∈ W :

M,w |= p ⇐⇒ w ∈ V (p)

M,w |= ¬φ ⇐⇒ M,w ̸|= φ,

M,w |= φ→ ψ ⇐⇒ (M,w |= φ⇒ M,w |= ψ),

M,w |= □φ ⇐⇒ for all v (wRv ⇒ M, v |= φ).

Hilbert system (K).
• All propositional tautologies.
• Modal axiom (K): □(φ→ ψ) → (□φ→ □ψ).
• Rules: Modus Ponens (MP) and Necessitation (Nec): from ⊢ φ infer ⊢ □φ.

This system is sound and complete for the class of all Kripke frames (W ,R); no frame conditions
are imposed on R.
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Hybrid Modal Logic H(@)

Language. Extend K with a denumerable set of nominals i , j , . . . (names of single worlds) and
the satisfaction operator @iφ.

Kripke semantics (with names). A model M = (W ,R,V ) with V (i) ∈ W for every nominal i
(single designated world). For w ∈ W :

M,w |= i ⇐⇒ w = V (i), M,w |= @iφ ⇐⇒ M,V (i) |= φ,

Booleans and □ as in K.

Axioms/rules on top of K.

• (K@) @i (φ→ ψ) →
(
@iφ→ @iψ

)
.

• (Ref@) @i i .

• Rules: MP, Nec (for □), and Hybrid generalization (Gen@): from ⊢ φ infer ⊢ @iφ (with i
fresh).

Nominals name states; @iφ says “φ holds at the state named i”. This enables direct reference to
states and local reasoning while retaining K’s frame-general completeness.
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Many-sorted Hybrid Modal Logic HΣ(@)

Signature. Σ = (S ,Σ,N) where S is a set of sorts; Σ gives poly-ary modal operators
σ :s1×· · ·×sn → s; N = (Ns)s∈S are constant nominals of sort s.

Language (by sort s). φs ::= p | j | ¬φs | φs ∨ φs | σ(φs1 , . . . , φsn)s | @ t
kφt .

Frames and models. A Σ-frame F = ((Ws)s∈S , (Rσ)σ∈Σ, (N
F
s )s∈S), with

Rσ ⊆ Ws ×Ws1 × · · · ×Wsn , N
F
s = {w c | c ∈ Ns} ⊆ Ws (singletons). A model M = (F ,V )

where V : PROP→P(W ) is S-sorted.

Satisfaction (only non-Boolean clauses).

• M,w |s= j , if and only if Vs(j) = {w} for any j ∈ NOMs ∪ Ns ,

• if σ ∈ Σs1...sn,S then M,w |s= σ(ϕ1, . . . , ϕn), if and only if there is
(w1, . . . ,wn) ∈ Ws1 × · · · ×Wsn such that Rσww1 . . .wn and M,wi |

si= ϕi for any i ∈ [n],

• M,w |s= @s
kψ if and only if M, u |t= ψ where k ∈ NOMt ∪ Nt , ψ has the sort t and

V N
t (k) = {u}.
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Many-sorted Hybrid Modal Logic HΣ(@)
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Multi-layer perceptron theory

• we consider Σ := (S ,Σ,N) with S = {rmv , act, ln} with the following definition of
the particular sets of operators and constant nominals:

• Σrmv = {¬L : rmv → rmv ,⊕L : rmv × rmv → rmv} ∪ {♢r : rmv → rmv | r ∈ [0, 1]Q};
• Nrmv = {γr | r ∈ [0, 1]Q} a set of nominal constants
• Σact = {init, train, stop : rmvn → act | n ∈ N};
• Σln = {[_]⟨_⟩ : act × rmvn → ln | n ∈ N}
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Axioms for rmv -formulas
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Definitions for neural networks

• n (the number of inputs), k (the number of hidden layers) ∈ N;
• if h = (h1, . . . , hn) ∈ [0, 1]nQ, then we denote by hn1 the vector (h1, . . . , hn) of

corresponding rmv -nominal constants;
• i f w = (wij)

n
i ,j=1 ∈ Mn([0, 1]Q) is a square matrix then we denote by w := (wij)

n
i ,j=1

the corresponding matrix of rmv -nominal constants

• The atomic act-formulas are:
• init(hn1) starts the forward training for the n inputs hn1;
• train(hn1) performs a forward step for the n inputs hn1;
• stop(hn1) stops the training process with the outputs hn1.
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Definitions for neural networks

• the training process of a neural network is an inference on the sort ln;
• the particular operator is [αact ]⟨strmv ⟩ where

• αact is an action;
• strmv is a sequence of formulas of sort rmv representing a configuration;

• the entire formula means that in the state strmv we perform the action αact ;
• note that we use [αact ]⟨⟩ which means that we reached the empty state.
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Neural networks axioms

• before defining the axioms, we consider the following notations where λn1, bk0 are
vectors and wk

0 is a matrix of nominal terms of sort rmv :
(n1) nextw,b(λ

n
1) := (b ⊕

⊕n
i=1 ♢w1iλi , . . . , b ⊕

⊕n
i=1 ♢wniλi )

(n2) end(y, λn1, ε) := dL(y,
∨n

1λi ) →L ε

(n3) updatedλn
1
⟨wk

0 , b
k
0⟩ := ⟨uwk

0 , ubk0⟩.
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Neural network axioms

For a neural network with one input (h1, . . . , hn) ∈ [0, 1]nQ and the expected output
y ∈ [0, 1]Q the axioms are:

(N0) [init(hn1)]⟨wk
0 , b

k
0⟩ → [train(hn1)]⟨wk

0 , b
k
0⟩

(N1) [train(hn1)]⟨wk
i , b

k
i ⟩ → [train(nextwi ,bi (h

n
1))]⟨wk

i+1, b
k
i+1⟩

(N2) [init(hn1)]⟨wk
0 , b

k
0⟩ → ([train(λn1)]⟨⟩ ∧ ¬@ln

1Lend(y, λ
n
1, ε) →

[init(hn1)]updatedλn
1
⟨wk

0 , b
k
0⟩)

(N3) [init(hn1)]⟨wk
0 , b

k
0⟩ → ([train(λn1)]⟨⟩ ∧ @ln

1Lend(y, λ
n
1, ε) → [stop(λn1)]⟨wk

0 , b
k
0⟩)

Our logic is HΣ(@) + ΛMLP , where

ΛMLP = {(Nom1)− (Nom3), (M1)− (M6), (R1)− (R4), (N(0)− (N3)}

The (weak) completeness results hold: our logic is complete with respect to the class of
models defined by ΛMLP .
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Example

h1

h2

a1
1

a1
2

λ1

λ2

ŷ

Figure: Example

• we have: n = 2, k = 1;
• we consider: the inputs h = (0.2, 0.3), the expected output y = 0.8, the admitted

error ε = 10−1, the learning rate η = 0.1 and the initial weights and biases:

w0 =

(
0.4 0.3
0.6 0.1

)
, w1 =

(
0.9 0.8
0 1

)
, b0 = 0.1, b1 = 0.15.
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Example

The training process performs as follows:
(1) [init(h)]⟨(w0,w1), (b0, b1)⟩ → [train(h)]⟨(w0,w1), (b0, b1)⟩ (N0)
(2) [train(h)]⟨(w0,w1), (b0, b1)⟩ → [train(nextw0,b0(h))]⟨w1, b1⟩ (N1)

If a1 = (a1
1, a

1
2) = nextw0,b0(h), then a1 = (0.27, 0.25).

(3) [train(a)]⟨w1, b1⟩ → [train(nextw1,b1(a))]⟨⟩ (N1)

We note that λ = (λ1, λ2) = nextw1,b1(a) = (0.393, 0.626).

(4) [init(h)]⟨(w0,w1), (b0, b1)⟩ → [train(λ)]⟨⟩ (1,2,3)

We note that ŷ = 0.626, so end(y, λ, ε) = dL(y, ŷ) →L ε is equivalent with 0.174 →L 0.1,
which means that @ln

1Lend(y, λ, ε) is false. Consequently, we apply (N2):

(5) [init(h)]⟨(w0,w1), (b0, b1)⟩ → ([train(λ)]⟨⟩ ∧ ¬@ln
1Lend(y, λ, ε) →

→ [init(h)]updatedλ⟨(w0,w1), (b0, b1)⟩) (N2)
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Verifying network properties

• the system HΣ(@) + ΛMLP can be adapted for verifying network properties;
• we show that we can track the number of eochs of the training process;
• we consider E our limit, and if 1E = 1/E , then 1E ⊕ · · · ⊕ 1E = 1 if the sum has E

terms;
• we keep this formula as the first argument of the configuration operator
⟨_⟩ : rmvn → ln.
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Verifying network properties - axioms

(N0¬E ) [init(hn1)]⟨r,wk
0 , b

k
0⟩ ∧ ¬@ln

1Lr → [train(hn1)]⟨r,wk
0 , b

k
0⟩

(N0E ) [init(hn1)]⟨r,wk
0 , b

k
0⟩ ∧ @ln

1Lr → [stop()]⟨1L,wk
0 , b

k
0⟩

(N1) [train(hn1)]⟨r,wk
i , b

k
i ⟩ → [train(nextwi ,bi (h

n
1))]⟨r,wk

i+1, b
k
i+1⟩

(N2) [init(hn1)]⟨r,wk
0 , b

k
0⟩ → ([train(λn1)]⟨⟩ ∧ ¬@ln

1Lend(y, λ
n
1, ε) →

[init(hn1)]updatedλn
1
⟨r ⊕ 1E ,wk

0 , b
k
0⟩)

(N3) [init(hn1)]⟨r,wk
0 , b

k
0⟩ → ([train(λn1)]⟨r⟩ ∧ @ln

1Lend(y, λ
n
1, ε) → [stop(λn1)]⟨r,wk

0 , b
k
0⟩)
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Backpropagation in Łukasiewicz logic

• Backpropagation is formulated entirely within Łukasiewicz logic: every stage is
computed in [0, 1] and uses only MV–algebraic operations.

• For each layer t ∈ {1, . . . , k}, the forward pass is at := ReLU1(zt), where
zt = Wtat−1 + bt

• The derivative of the activation is represented as a diagonal matrix

Dt := diag
(
1(0,1)(z

1
t ), . . . , 1(0,1)(z

nt
t )
)
,

where nt is the number of neurons of layer t and 1(0,1)(z) = 1 if 0 < z < 1 and 0
otherwise.

• At the output layer the initial gradient is g := sign(ak − y) ∈ {−1, 0, 1}nk .
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Chain rule and parameter gradients

• The loss is measured with the Łukasiewicz distance dL and backpropagation proceeds
by the chain rule.

• For any hidden layer t,

∇ztdL = Πtg , Πt := Dt(Wt+1)
⊤Dt+1(Wt+2)

⊤ · · ·Dk .

• Parameter gradients:

GWt = ∇WtdL = (∇ztdL) (at−1)
⊤, Gbt = ∇btdL = ∇ztdL.
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Normalization and Łukasiewicz updates

• Since raw gradients may lie outside [0, 1], normalize by the ℓ∞–norm:

ĝ =
|g |

∥G∥∞ + ε
∈ [0, 1], ε > 0.

• With learning rate η ∈ [0, 1], combine via the Łukasiewicz product:

∆ = η ⊗ ĝ .

• Update is expressed exclusively with Łukasiewicz operations. For each weight:

uw = (w ⊖∆−) ⊕ ∆+

∆+ =

{
η ⊗ ĝ , g < 0

0, otherwise
, ∆− =

{
η ⊗ ĝ , g > 0

0, otherwise
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Implementation in Lean

• implementation of the many-sorted hybrid modal logic + the multi-layer perceptron
theory;

• algorithm that generates a model;

• real-world experiments.
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Many-sorted hybrid modal logic in Lean 4
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Verifying the number of epochs
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Automatically Generated Model Algorithm

1. Start from the initial state s0, with initial weights and biases
2. apply Action.train to compute a new state via forward propagation
3. Evaluate the output of the network.
4. Compute the loss with respect to the given target vector.
5. If the loss is below the given threshold: (5.1) apply Action.stop to finalize the

training and (5.2) terminate the algorithm and return the list of all transitions and
the final state, with the computed weights and biases.

6. Else: (6.1) apply Action.update to adjust the biases and (6.2) repeat from step 2
for the next epoch, up to the maximum allowed number of epochs.
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Experiment - dataset

Figure: Two moons dataset for classification
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Experiment - training & results

• 6000 training examples & 2000 test examples;
• these classes are balanced;
• each input vector is scaled to the unit interval [0, 1];
• we use a fully-connected architecture with two hidden layers, of 32 neurons each,

followed by a single output unit;
• η = 1;
• we use in the training process mini-batches of size 128 for 250 epochs;
• we compare with a similar Python architecture, but with ReLU in the hidden layers, a

sigmoid output, binary cross-entropy and SGD as the optimization part.

Model Train Accuracy Test Accuracy
Lean Łukasiewicz MLP 0.9 0.89
Python Classic MLP 0.96 0.96

Table: Comparative results
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Related Work

• the idea of representing neural networks as formulas of an extension of Łukasiewicz logic
goes back to earlier work; recent Logical Neural Networks further systematize t-norm–based
approaches;

• our setting builds on the general many-sorted hybrid modal logic from prior work where it
was used to specify a (toy) programming language and its operational semantics;

• formal verification has emerged as a tool for certifying NN behaviour; the Hoare-like
framework NeSAL is highlighted. In related results, the system HΣ(@, ∀) can model a
programming language and an adequate Hoare logic, suggesting future alignment with
NeSAL within our logic;

• Lean 4 is chosen for its dual nature as an extensible theorem prover and an efficient
programming language.
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Conclusions

• we propose many-sorted hybrid modal logic as a general, expressive system in which a
multilayer perceptron (with ReLU1) is specified as a particular theory; training actions
become modal operators and the training process is a sequence of logical deductions;

• using Lean 4, the algorithmic implementation of training is backed by logical proofs,
integrating specification, verification, and execution;

• on two-moons experiment, the Łukasiewicz MLP achieves ≈0.90 train / 0.89 test accuracy
(compared to 0.96 / 0.96), indicating stable learning under strict Łukasiewicz arithmetic and
pointing to refinements (e.g., smoother/fuzzy losses).

• this work contributes to defining and analyzing neural networks within a logical framework,
supporting more transparent and reliable AI.
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The End
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